THE EXPERT’S VOICE® IN .NET

Foundations of

ASP.NET
AJAX

www.free-ebooks-download.org

Build AJAX Applications in ASPNET

Robin Pars, Laurence Moroney,
and John Grieb

Apress:




www.free-ebooks-download.org




Foundations of ASPNET
AJAX

Robin Pars, Laurence Moroney, and John Grieb

Apress’



Foundations of ASP.NET AJAX
Copyright © 2007 by Robin Pars, Laurence Moroney, and John Grieb

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-828-3
ISBN-10 (pbk): 1-59059-828-8
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham

Technical Reviewers: Andy Olsen, Fabio Claudio Ferracchiati

Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick,
Jason Gilmore, Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Beth Christmas

Copy Editor: Julie McNamee

Associate Production Director: Kari Brooks-Copony

Production Editor: Janet Vail

Compositor: Gina Rexrode

Proofreader: Lisa Hamilton

Indexer: Broccoli Information Management

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.


mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com

T'would like to dedicate this book to the memory of Steve Irwin. May the world have more
people as knowledgeable, genuine, enthusiastic, benevolent, and compassionate as him.

—Robin Pars
This book is dedicated to Rebecca, my wonderful wife and constant supporter.

Ijust don’t know what I would do without her.
Also to Claudia and Christopher, the greatest daughter and son a guy could ask for!

—Laurence Moroney






Contents at a Glance

Aboutthe AUthOrs . ... . . Xiii
About the Technical ReVIEWETS . . ... ... e xiv
ACKNOWIBAgMENTS . ... XV
INtrodUCHION ... ... Xvii
CHAPTER 1  Introducing AJAX . ... .. ... . 1
CHAPTER 2 Taking AJAXtothe NextLevel.................................. 17
CHAPTER 3  The Microsoft AJAX Library: Making Client-Side
JavaScriptEasier................. ... 31
CHAPTER 4  ASP.NET AJAX Client Libraries.................................. 55
CHAPTER 5 Introducing Server Controls in ASPNETAJAX ................... 81
CHAPTER 6  Using Server Controls in ASPNETAJAX . ....................... 109
CHAPTER 7  Using the ASP.NET AJAX Control Toolkit (Part1)................ 131
CHAPTER 8  Using the ASP.NET AJAX Control Toolkit (Part2)................ 165
CHAPTER 9  AJAX-Style Mapping Using the Virtual Earth SDK............... 205
CHAPTER 10 Building a Sample Application Using ASPNETAJAX ............ 225






Contents

Aboutthe AUthOrs . ... . . Xiii
About the Technical ReVIEWETS . . ... ... e xiv
ACKNOWIBAgMENTS . ... XV
INtrodUCHION ... ... Xvii
CHAPTER 1 Introducing AJAX . ... ... ... .. i, 1
Delving into the History of Web Application Technology................ 1

Thin Client Applications Save the Day ............................... 6

AJAXEntersthe Picture ........... ... ... 7

Using the XMLHttpRequest Object ................................. 10

Using Visual Studio 2005....... ... ..o 12

Seeing a Simple Example inAction ........................... 12

SUMMArY ... 15

CHAPTER 2 Taking AJAX to the NextLevel ............................. 17
Introducing ASP.NET 2.0 Server Controls ........................... 17

Synchronous vs. Asynchronous Web Applications.................... 24

Introducing the ASP.NET AJAX Architecture ......................... 25

An Overview of the AJAX Library. ............................. 26

The Microsoft AJAX Library and Web Services.................. 27

JavaScript Object Notation (JSON) . ........................... 28

An Overview of the ASP.NET 2.0 AJAX Extensions............... 28

SUMMANY ... 29



CONTENTS

CHAPTER 3

CHAPTER 4

The Microsoft AJAX Library: Making Client-Side

JavaScriptEasier ... 31
JavaScript with the Microsoft AJAX Library ......................... 31
Downloading and Installing ASP.NET 2.0 AJAX Extension 1.0 ... .. 32
Creating Your First AJAX Application. .......................... 32
Adding a Custom JavaScriptClass. ........................... 34
Using the AJAX Script Manager to Deliver Your Custom Class. . . .. 37
Coding and Running the Application. .......................... 40
Using Namespaces and Classes in JavaScript....................... 4
Using Inheritance in JavaScript............... ... ... .. ... 43
Implementing Interfaces in JavaScript ............................. 45
Accessing Server Resources from JavaScript . ...................... 49
SUMMANY .. 54
ASP.NET AJAX Client Libraries ............................. 55
JavaScript Type Extensions .................. ... .. 55
Array and Boolean Extensions. ............................... 55
Date EXteNSiONS . . .....cot 58
Error EXtensions. . ............. 59
Number Extension................ i 61
ObjectExtension ............. ... i 63
String Extension.............. .. 64
The SYS Namespace .. ......oov i 66
Sys.Application ......... ... 67
Sys.Component and Client Component Model....................... 70
SYS. UL oo yal
Sys.Ul.DomElement............... ... ... 72
Sys.ULDomEvent ......... ... ... .. 75
Global Shorteuts ... 77
Other Commonly Used Classes in the Sys Namespace ............... 78
SYS. BIrOWSEr . ... 78
Sys.StringBuilder . ... 78

SUMMANY ... 80



CHAPTER 5

CHAPTER 6

CHAPTER 7

CONTENTS

Introducing Server Controls in ASP.NET AJAX ............ 81
Using ASP.NET AJAX Server Controls in Visual Studio 2005 ........... 81
Introducing the ScriptManager Control ............................. 83

Using the ScriptManager ............. ..., 83

Programming with the ScriptManager......................... 84
Introducing the ScriptManagerProxy Control ........................ 90
Introducing the UpdatePanel Control ............................... 95

Using the UpdatePanel Control ............................... 95

Programming with UpdatePanel .............................. 98
Introducing the UpdateProgress Control ........................... 102

Using the UpdateProgress Control ........................... 102

Programming with the UpdateProgress Control................ 103
Introducing the Timer Control ................. ... ...l 105

Usingthe Timer Control ............... ... ... .. ... ... oot 106
SUMMArY . ... 108
Using Server Controls in ASP.NET AJAX .................. 109
Using the UpdatePanel, UpdateProgress, and Timer Controls.......... 109
UsingaTask ListManager...............ccooiiiiiiiiiniinan... 115
SUMMArY ... 129
Using the ASP.NET AJAX Control Toolkit (Part1)......... 131
Installing the ASP.NET AJAX Control Toolkit. ........................ 131
The Accordion and AccordionPane Controls........................ 133
AlwaysVisibleControlExtender Control . ............................ 135
The AnimationExtender Control............. ... ... ... ............ 137

Using Fade Animation.................. ... ... .. ... ... ...... 138

Using Length Animation .................... ... ... ... ... 140

Using Discrete Animation................................... 144
AutoCompleteExtender Control . ................. ... ... ... ... 144
CalendarExtender Control ............ ... ..., 147
CascadingDropDown Control. ................ ... ... ... ... ...... 149
CollapsiblePanelExtender Control...........................c..... 154
ConfirmButtonExtender Control. .............. ... ... ............. 157
DragPanelExtender Control ..., 159
DropDownExtender Control . ................. ... .. ... ..., 161

SUMMANY ... 163



CONTENTS

CHAPTER 8

CHAPTER 9

Using the ASP.NET AJAX Control Toolkit (Part2)......... 165
DropShadow and RoundedCorners Extenders...................... 165

DropShadow Extender ...l 165

RoundedCorners Extender .................................. 167
DynamicPopulate Extender .................. ... ... ...l 168
FilteredTextBox Extender ............. ..., 171
HoverMenu Extender............... ... i 172
MaskedEdit and MaskedEditValidator Extenders.................... 174
ModalPopup Extender. ... 177
NoBotExtender ......... ... ... o . 180
NumericUpDown Extender................... ... ... ..o ... 182
PasswordStrength Extender .................. ... ...l 185
PopupControl Extender............... ... ... i, 188
Rating Control .......... ... i 190
ReorderList Control.......... ... 192
ResizableControl Extender................... ... .. ... ... .. ...... 195
Slider Extender. . ... 197
SlideShow Extender ................ ... i 198
TabContainer and TabPanel Control ............................... 201
SUMMANY ... 204
AJAX-Style Mapping Using the Virtual Earth SDK ... .. .. 205
Introduction to Microsoft Virtual Earth (VE) . ........................ 205
Programming the VEMap Control ................................. 206

CreatingaSimpleMap....................... .. ... ........ 207

Setting Longitude and Latitude . ............................. 216

Settingthe Zoom Level................ ...l 218

ChoosingaMapType .............cc it 219

Specific or Relative Panning ................................ 220

Using Pushpins. ... 223

SUMMArY . ... 224



CONTENTS

CHAPTER 10 Building a Sample Application Using ASP.NET AJAX ....225

Understanding the Application Architecture ........................ 226
Creating the Application..................... ..ot 229
Creating Basic Company and Quote Information............... 232
Creating the Price History Pane.............................. 238
Creating the Charts & AnalyticsPane......................... 241
Applying ASPNET AJAX. .. ... 253
SUMMANY ... 255

xi






About the Authors

ROBIN PARS has more than 12 years of IT development experience as
a developer and architect. He has been working with ASPNET since
the initial release of the ASP+ runtime in the summer of 2000. Robin
holds a B.Sc. degree in Computer Science from the University of Cali-
fornia along with nearly a dozen IT certifications. He has also been a
coauthor or a contributing author to seven other technical books.

LAURENCE MORONEY is a technology evangelist at Microsoft, where he
specializes in the technologies for the next generation of the Web. He
has been amazed at how things have progressed since Foundations of
Atlas (the predecessor of this book) was published. It is a better time
than ever to be into technology, and the power that we have at our
fingertips with technologies such at ASPNET AJAX, Silverlight, and
.NET 3.x is making work fun again! Laurence’s blog is at

http://blogs.msdn.com/webnext.

JOHN GRIEB lives on Long Island, New York, and works for Reuters as a technical special-
ist. He is currently the lead developer of a project to migrate Reuters Messaging to
Microsoft Live Communication Server 2005. Prior to that, he spent several years in
Reuter’s Microsoft R&D Group and Innovation Lab, gaining experience in a broad range
of cutting-edge Microsoft technologies by participating in many of Microsoft’s beta pro-
grams and developing prototypes demonstrating how they could be applied to Reuter’s
own products and services.

xiii


http://blogs.msdn.com/webnext

Xiv

About the Technical Reviewers

ANDY OLSEN is a freelance developer and consultant based in the UK.
Andy has been working with .NET since Beta 1 days and has co-
authored and reviewed several books for Apress covering C#, Visual
Basic, ASPNET, and other topics. Andy is a keen football and rugby
fan and enjoys running and skiing (badly). Andy lives by the seaside
in Swansea with his wife Jayne and children Emily and Thomas, who
have just discovered the thrills of surfing and look much cooler than
he ever will!

FABIO CLAUDIO FERRACCHIATI is a senior consultant and a senior analyst/developer using
Microsoft technologies. He works for Brain Force (www.brainforce.com) in its Italian
branch (www.brainforce.it). He is a Microsoft Certified Solution Developer for .NET, a
Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional,
and a prolific author and technical reviewer. Over the past 10 years, he’s written articles
for Italian and international magazines and coauthored more than 10 books on a variety
of computer topics. You can read his LINQ blog at www. ferracchiati.com.


http://www.brainforce.com
http://www.brainforce.it
http://www.ferracchiati.com
http://www.brainforce.it

Acknowledgments

First and foremost, thanks to everyone at Apress who helped make this book possible
including Ewan Buckingham, Julie McNamee, and Janet Vail. I especially would like to
thank the wonderful Beth Christmas for her continuing patience and understanding. I'd
also like to extend a big thank you to Andy Olson for his excellent technical reviews done
with great diligence and attention to detail.

Above all, I would like to thank Ted Kasten and Katja Svetina for their patience and

incessant warm support throughout this long and arduous project.
Robin Pars

Xv






Introduction

AIAX is fast becoming a de facto standard for developing responsive and rich web
applications. This evolutionary step in the user experience is being used in more and
more web applications from Outlook Web Access to Google maps and beyond.

But how do you write AJAX applications? Not too long ago, you had to be a JavaScript
expert and use tools that are not as sophisticated as those used in standard ASPNET
development. As such, it had been difficult and time-consuming to develop, debug, and
maintain AJAX applications despite their innate user friendliness. However, as the popu-
larity and use of AJAX web applications rose, so did a number of frameworks designed to
ease AJAX development by providing more out-of-the-box functionality. A few of those
packages had been somewhat geared toward developers working with ASPNET.

After along beta period, in early 2007, Microsoft officially released the ASPNET AJAX
Extensions, which include a set of client- and server-side controls and functionality
leveraging some of the existing technologies in ASPNET. This release also included the
ASPNET AJAX Toolkit, which contains a set of control extenders that offer enhanced Ul
effects and built-in AJAX capabilities that can be used on a page with very little develop-
ment effort. With this release, Microsoft brought about major productivity leaps to AJAX
development in the world of ASPNET.

With ASPNET AJAX, you can easily convert your existing ASPNET applications to
AJAX applications, and you can add sophisticated user interface elements such as drag
and drop, networking, and browser compatibility layers, with simple declarative pro-
gramming (or, if you prefer to use JavaScript, you can do that too).

This book is a primer on this technology. It introduces you to ASPNET AJAX, explores
some of the main features and controls, and takes you into how to build AJAX applica-
tions quickly and simply, taking advantage of the IDE productivity offered by Visual
Studio.

It's going to be a fun ride, and by the end of it, you'll be an expert in Web 2.0 and
hungry to start developing for it.

Who This Book Is For

This book is for anyone interested in developing next-generation web application inter-
faces that make the most of AJAX-style asynchronous functionality. Anyone who has ever
coded a web page will understand the latency problems associated with postbacks and

Xvii



xviii

INTRODUCTION

maintaining state and will be able to gain valuable new tools for their programming

arsenal by reading this book.
Some knowledge and prior experience with ASPNET, C#, or Visual Basic .NET will be

helpful to properly understand and follow along with this book.

Prerequisites

You'll need Visual Studio 2005 or Visual Studio 2008; any edition is fine. If you are using
Visual Studio 2005, you will also need the ASPNET AJAX Extensions and the ASPNET
AJAX Toolkit, which can be downloaded from http://ajax.asp.net.


http://ajax.asp.net

CHAPTER 1

Introducing AJAX

Welcome to Foundations of ASENET AJAX. This book is intended to get you up and
running with the new framework from Microsoft that allows you to build Web 2.0 appli-
cations that implement AJAX functionality. If you've been working in the field of web
technology, you know AJAX is hard to avoid—and even harder to implement. Microsoft
has thrown its hat into the AJAX arena by doing what it does best—giving you, the devel-
oper, a framework and the tools that allow you to build highly interactive and
personalized solutions that satisfy your web-based business requirements and users’
experiences more quickly and easily than previously possible.

This chapter brings you up-to-date on web application technology with a brief
overview of computing history from its huge mainframe origins to today’s powerful desk-
top PCs and the global reach provided by the World Wide Web. It’s the beginning of what
I hope will be an enjoyable and informative ride.

Delving into the History of Web Application
Technology

After the popularity of office productivity applications exploded, and as people began
using these applications daily, they required even faster and more sophisticated plat-
forms, which caused the client to continue to evolve exponentially.

It’s important to note that the more sophisticated applications were disconnected
applications. Office productivity suites, desktop-publishing applications, games, and
the like were all distributed, installed, and run on the client via a fixed medium such as
a floppy disk or CD-ROM. In other words, they weren't connected in any way.

The other breed of application, which was evolving much more slowly, was the
connected application, where a graphical front end wrapped a basic, text-based communica-
tion with a back-end server for online applications such as e-mail. CompuServe was one of
the largest online providers, and despite the innovative abstraction of its simple back end to
make for a more user-centric, graphical experience along the lines of the heavy desktop
applications, its underlying old-school model was still apparent. Remember the old Go com-
mands? Despite the buttons on the screen that allowed a user to enter communities, these
simply issued a Go <communityname> command behind the scenes on your behalf.



CHAPTER 1 " INTRODUCING AJAX

Although this approach was excellent and provided a rich online experience, it had
to be written and maintained specifically for each platform; so for a multiplatform expe-
rience, the vendor had to write a client application for Windows, Unix, Apple, and all
other operating systems and variants.

In the early 1990s, however, a huge innovation happened: the web browser.

This innovation began the slow merger of these two application types (connected
and disconnected)—a merger that still continues today. We all know the web browser by
now, and it is arguably the most ubiquitous application used on modern computers,
displacing solitaire and the word processor for this storied achievement!

But the web browser ultimately became much more than just a new means for
abstracting the textual nature of client/server network communication. It became an
abstraction on top of the operating system on which applications could be written and
executed (see Figure 1-1). This was, and is, important. As long as applications are written
to the specification defined by that abstraction, they should be able to run anywhere
without further intervention or installation on behalf of the application developer. Of
course, the browser had to be present on the system, but the value proposition of having
a web browser available to the operating system was extremely important and ultimately
launched many well-known legal battles.

y = v vy = X
HTTP Request II i I
——f==""" " T Render HTMLAs | N |y | S
—_— .
(“ = Windows GUI ’,-——>

-
Windows Browser 7

Windows User

HTML Response

It Render HTML As
<« A MacGul

Mac Browser

Macintosh User Internet

——————— HTTP
- Render HTML As ——e=)»
(‘, K\/ Unix GUI Requests
Unix User Unix Browser HTML
Responses

Figure 1-1. Web browser—based request/response architecture



CHAPTER 1 ©' INTRODUCING AJAX

Probably, the problem with this abstraction was that it was relatively simple and not
originally designed or implemented for anything more complex than laying out and for-
matting text and graphics. I am, of course, referring to Hypertext Markup Language
(HTML). This specification, implemented by a browser, meant that simple text could be
placed on a web server, downloaded from a server, interpreted by a browser, and laid out
in a far more pleasing way than simple green-on-black on a page, giving the user a better
experience. More importantly, however, it could generate a whole new breed of applica-
tion developers; all a developer had to do to create an online, connected application with
a graphical experience was to generate it as HTML, and the browser would do the rest.
You wouldn'’t need the resources of a CompuServe or an America Online to build an
application that rendered the text for you! All you had to do was generate HTML, either
by coding it directly or writing a server-side application (called Common Gateway Inter-
face, usually written in the C/C++ language) that would generate it for you. Although the
Internet had been around for a long time, it was just now starting to come of age.

And guess what happened? The cycle began again.

Everybody jumped on the browser bandwagon, and Common Gateway Interface (CGI)
applications, running on a server and delivering content to browsers, were hot. The user
experience, with the only interaction being postbacks to the server (similar to computer ter-
minals, only prettier), soon became too limiting due to server responsiveness, huge network
loads, and so on, and new technologies began to emerge to improve the user experience.

Enter Java and the applet. Java applications run on top of the Java Virtual Machine
(JVM). A Java applet is a special kind of Java application that runs in a browser; the
browser provides the JVM for the applet. In other words, the Java applet runs in a virtual
machine (the JVM) on top of another virtual machine (the browser) on top of a virtual
machine (the operating system) on top of a real machine (the underlying hardware). This
provided a greater abstraction and introduced a new platform that developers could code
to and have even richer applications running within the browser. This was important
because it increased complex client-side functionality implemented in a modern, OO
(object-oriented) programming language. Enhanced graphical operations (e.g., graphs),
client-side processing of business rules possibly, multithreading, and so on used the
same simple transport mechanisms of the Internet, but again without requiring the
resources of a huge company writing their own GUI platform on which to do it. Probably,
Java applets suffered from constraints; namely, to achieve a cross-platform experience,
developers had to follow a lowest common denominator approach. The clearest example
of this was in its support for the mouse. Apple computers supported one button, the
Microsoft Windows operating system supported two, and many Unix platforms sup-
ported three. As such, Java applets could support only one button, and many Unix users
found themselves two buttons short!

The Java applets run in a security sandbox and therefore cannot access local
resources such as the file system or databases, and they cannot create new outbound
connections to new URLs on the server (because this could be potentially dangerous).
This lack of access to corporate resources led to Java spreading to the server side: server-
side Java applications called serviets generate HTML pages dynamically and have access



CHAPTER 1 " INTRODUCING AJAX

to enterprise resources (such as corporate databases, message queues, user information,
etc.) because the servlet runs in a more secure server-side environment.

The JVM and language evolved to become a server-side implementation and a great
replacement for CGI applications on the server. In addition to this, web browsers contin-
ued to evolve and became even more flexible with the introduction of the Document
Object Model (DOM) and Dynamic HTML (DHTML) support. Scripting support was
added to the browser with the development of JavaScript (unrelated to Java despite its
name) and VBScript. To handle these scripting languages, interpreters were plugged into
the browser. An extensible browser architecture proved to be a powerful feature.

Thanks to extensibility, applications such as Macromedia Flash added a new virtual
machine on top of the browser, allowing for even more flexible and intense applications.
The extensible browser then brought about ActiveX technology on the Windows plat-
form, whereby Windows application functionality could be run within the browser when
using Microsoft browsers (or alternative ones with a plug-in that supported ActiveX).
This powerful solution enabled native functionality to be accessible from networked
applications (see Figure 1-2). This got around the restrictions imposed by the security
sandbox and lowest common denominator approach of the JVM, but ultimately, this
led to problems in the same vein as distributing client-only applications; specifically,

a heavy configuration of the desktop, was necessary to get them to work. Although this
configuration could be automated to a certain degree, it resulted in two show-stopping
points for many.

Other Plug-In(s)

Script Parser

. A -, ActiveX Plug-In |
v Sophisticated
ol Java Plug-In

User
DHTML Internet
HTML
HTTP
----- > Requests
Browser ) HTML
Responses

Figure 1-2. Sophisticated browser architecture



CHAPTER 1 ©' INTRODUCING AJAX

First, it didn’t always work, as the nature of the configuration, changing the Windows
registry, often failed—or worse, broke other applications. ActiveX controls were rarely
self-contained and usually installed runtime support files. Different versions of these
support files could easily be installed on top of each other—a common occurrence
leading to broken applications (called DLL Hell).

The second problem was security. A user’s computer, when connected to the Inter-
net, could effectively allow code, written by anybody, to run. The ActiveX technology was
fully native, not restricted by the Java or HTML sandboxes (more about these in a
moment); therefore, users could innocently go to a web page that downloaded an ActiveX
control and wrought havoc or stole vital information from their systems. As such, many
users refused to use them, and many corporate administrators even disallowed them
from use within the enterprise. The virtual nature of Java and HTML—where applications
and pages were coded to work on a specific virtual machine—offered better security;
these machines couldn’t do anything malicious and, therefore, applications written to
run on them couldn’t either. Users were effectively safe, although limited in the scope of
what they could do.

At the end of the 1990s, Microsoft unveiled the successor to ActiveX (among others)
in its .NET Framework. This framework would form Microsoft’s strategic positioning for
many years to come. Like Java, it provided a virtual machine (the Common Language
Runtime [CLR]) on which applications would run. These applications could do only what
the CLR allowed and were called managed applications. The .NET Framework was much
more sophisticated than the JVM, allowing for desktop and server-side web applications
with differing levels of functionality (depending on which was used). This was part of
“managing” the code. With the .NET Framework came a new language, C#, but this wasn't
the only language that could be used with .NET because it was a multilanguage, single-
runtime platform that provided great flexibility.

The .NET Framework was revolutionary because it united the client-application
experience and connected-application experience with a common runtime that ActiveX
had tried but ultimately failed to accomplish. Because the same platform was used to
write both types of applications, the result was that the user experience would be similar
across both (see Figure 1-3). Coupled with the emergence of Extensible Markup Lan-
guage (XML), a language similar to HTML but specialized for handling data instead of
presentation, web application development was finally coming of age.



6

CHAPTER 1 " INTRODUCING AJAX

Desktop
Application
.NET - .NET Web Server-Side
Framework [ ( ) Framework | Server Resources
Browser
Client Server

Figure 1-3. The .NET Framework provides consistent browser, desktop, and server
application programming interfaces (APIs).

Thus, the pendulum has swung back toward the thin client/fat server approach.
Ironically, the thin client is probably fatter than the original servers because it’s an
operating system that can support a browser that is extended to support XML (through
parsers), scripting (through interpreters), and other plug-ins, as well as Java and .NET
virtual machines! With all these runtime elements available to developers and a
consistent server-side API (through the .NET Framework or server-side Java), rich,
high-performing applications built using the client/server model are now possible.

Thin Client Applications Save the Day

In the summer of 2001, I had my first “wow” experience with the power of what could be
done with a browser-based interface using scripting, DHTML, and asynchronous XML.
I was working for a product development group in a large financial services company in
New York and was invited by one of their Chief Technical Office (CTO) teams to take a
look at their new prototype of a zero-footprint technology for delivering financial infor-
mation, both streaming and static. They claimed they could stream news, quotes, and
charts to a browser with no installation necessary at the desktop, and they could do it in
such a manner that it met all the requirements of a typical client. In those days, the
biggest support problems were in the installation, maintenance, and support of heavy
Component Object Model (COM) desktop applications, and this would wipe them all
out in a single blow.

Naturally I was skeptical, but I went to see it anyway. It was a prototype, but it
worked. And it largely preserved the user experience that you'd expect from a heavier
application with drag-and-drop functionality; streaming updates to news, quotes, and
charts; and advanced visualization of data. If anything, it was almost superior to the
heavy desktops we were using!



CHAPTER 1 ©' INTRODUCING AJAX

And, it was all built in DHTML, JavaScript, DHTML behaviors, and a lot of server-side
functionality using Microsoft-based server products. It was pretty revolutionary.

In fact, it was too revolutionary—and it was too hard for management to take a risk
on it because it was so beyond their understanding of how applications should work and
how the market would accept it. (To be fair, part of their decision was based on my report
of concerns about how well the streaming part would scale, but that was nothing that
couldn’t be fixed!)

But then something terrible happened: September 11, 2001. On that fateful day, a
group of individuals turned airliners into missiles, crashing into the World Trade Center
and the Pentagon, and killing thousands of people. Part of all this destruction was the
loss of many data distribution centers that our company ran for the Wall Street commu-
nity. With the country having a “get-up-and-running” attitude and wanting the attack to
have as little impact on day-to-day affairs as possible, the pressure was on our company
to start providing news, quotes, charts, and all the other information that traders needed
to get the stock market up and running. The effort to build new data centers and switch
the Wall Street users over to them by having staff reconfigure each desktop one by one
would take weeks.

The CTO group, with its zero-footprint implementation, ran a T3 line to the
machines in the lab that was hosting the application, opening them to the Internet; set
up a Domain Name System (DNS) server; and were off and running in a matter of hours.
Any trader—from anywhere—could open Internet Explorer, point it at a URL, and start
working...no technical expertise required!

Thanks to an innovative use of technology, a business need was met—and that is
what our business is all about. Thanks to this experience, and what that group did, I was
hooked. I realized the future again belonged to the thin client, and massive opportunities
existed for developers and companies that could successfully exploit it.

AJAX Enters the Picture

AJAX, which stands for Asynchronous JavaScript and XML or Asynchronous Java and
XML (depending on who you ask), is a technique that has received a lot of attention
recently because it has been used with great success by companies such as Amazon and
Google. The key word here is asynchronous because, despite all the great technologies
available in the browser for delivering and running applications, the ultimate model of
the browser is still the synchronous request/response model. This means that when an
operation occurs in the web page, the browser sends a request to the server waiting for its
response. For example, clicking the Checkout button within an HTML page of an e-com-
merce application consists of calling the web server to process the order and waiting for
its response. As such, duplicating the quick refresh and frequent updates provided by
desktop applications is hard to achieve. The typical web application involves a refresh
cycle where a postback is sent to the server, and the response from the server is re-ren-
dered. In other words, the server returns a complete page of HTML to be rendered by the



CHAPTER 1 " INTRODUCING AJAX

browser, which looks kind of clunky compared to desktop apps. This is a drawback to this
type of architecture because the round-trip to and from the server is expensive in user
time and bandwidth cost, particularly for applications that require intensive updates.

What is interesting about the AJAX approach is that there is really nothing new about
it. The core technology—the XMLHttpRequest object—has been around since 1999 with
Internet Explorer, when it was implemented as an ActiveX plug-in. This is a standard
JavaScript object recognized by contemporary browsers, which provides the asynchro-
nous postback capabilities upon which AJAX applications rely. More recently, it has been
added to the Mozilla Firefox, Opera, and Safari browsers, increasing its ubiquity, and has
been covered in a World Wide Web Consortium (W3C) specification (DOM Load and
Save). With the high popularity of web applications that use the XMLHttpRequest object,
such as Google Local, Flickr, and Amazon A9, it is fast becoming a de facto standard.

The nice part about the XMLHttpRequest object is that it doesn’t require any propri-
etary or additional software or hardware to enable richer applications. The functionality
is built right into the browser. As such, it is server agnostic. Except for needing to make
some minor changes to your browser security settings, you can use it straightaway, lever-
aging coding styles and languages you already know.

To see an example of how it works, refer to Google Local (see Figure 1-4). As you use
the mouse to drag the map around the screen, the sections of the map that were previ-
ously hidden come into view quickly; this is because they were cached on your initial
viewing of the map. Now, as you are looking at a new section (by dragging the mouse),
the sections bordering the current one are downloading in the background, as are the
relevant satellite photographs for the section of map you are viewing.



CHAPTER 1 " INTRODUCING AJAX

& | Google l'ocal’-Seattle - Microsoft Internet Explorer =

File Edit “iew Favorites Tools  Help

aBack - e v E @ @ pSearch *Favnrites @ @v & @ - D n % 4ﬁ

Address ahttp:,l’,l’maps.guug\e.cumj Gn Links **
Help

Web |Images Groups Mews Froogle Local more »

o Search the map
Google |SEattle ‘ M Find businesses

Local ed., "hotels near lax" or "10 market 51, 2an francizco” (Get Directions
Local & Print (0 Email == Link tn this page
T
o Satellite
<[> S5
i s‘k\::\L\
Uake,
7
Camation
Amies i
= Lake {' I"LI
| [
I Lake i
e
1 Medina 5 - BelEvie
ound ‘Bellevue
ng|
posy
i Rsaquan D R,
|_I_| |
ki 005 Go fap data 2005 MAYTEQ™ - Terns o
b
Dane e Inkernet

Figure 1-4. Google Local uses AJAX extensively.

This background downloading, using the XMLHttpRequest object, makes using Google
Local such a smooth and rewarding experience. Remember, nothing is new here; it’s just
that having the XMLHttpRequest object built into the browser that can do this asynchro-
nously makes it possible to develop applications like this.

["Note For full details on how to develop in AJAX, check out Foundations of AJAX (Apress, 2005).

9



10

CHAPTER 1 " INTRODUCING AJAX

You will be looking at AJAX from a high level in this book and delving more deeply
into how Microsoft ASPNET AJAX will allow you to quickly and easily build AJAX-enabled
applications.

Using the XMLHttpRequest Object

As mentioned, the XMLHttpRequest object is the heart of AJAX. This object sends requests
to the server and processes the responses from it. In versions of Internet Explorer prior
to IE7, it is implemented using ActiveX, whereas in other browsers, such as Mozilla
Firefox, Safari, Opera, and Internet Explorer 7, it is a native JavaScript object. Unfortu-
nately, because of these differences, you need to write JavaScript code that inspects the
browser type and creates an instance of it using the correct technology.

Thankfully, this process is a little simpler than the spaghetti code you may remember
having to write when using JavaScript functions that heavily used DOM, which had to
work across browsers:

var xmlHttp;
function createXMLHttpRequest()

{
if (window.ActiveXObject)
{
xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
}
else if (window.XMLHttpRequest)
{
xmlHttp = new XMLHttpRequest();
}
}

In this case, the code is simple. If the browser doesn’t support ActiveX objects, the
window.ActiveXObject property will be null, and, therefore, the xmlHttp variable will be set
to a new instance of the native JavaScript XMLHttpRequest object; otherwise, a new
instance of the Microsoft.XMLHTTP ActiveX Object will be created.

Now that you have an XMLHttpRequest object at your beck and call, you can start
playing with its methods and properties. Some of the more common methods you can
use are discussed in the next few paragraphs.

The open method initializes your request by setting up the call to your server. It takes
two required arguments (the Hypertext Transfer Protocol [HTTP] command such as GET,
POST, or PUT, and the URL of the resource you are calling) and three optional arguments
(a boolean indicating whether you want the call to be asynchronous, which defaults to
true, and strings for the username and password if required by the server for security).

It returns void.



CHAPTER 1 ©' INTRODUCING AJAX

xmlHttp.open("GET" , "theURL" , true , "MyUserName" , "MyPassword");

The send method issues the request to the server. It is passed a single parameter con-
taining the relevant content. Had the original request been declared as asynchronous
(using the boolean flag mentioned earlier), the method would immediately return; other-
wise, this method would block until the synchronous response was received. The content
parameter (which is optional) can be a DOM object, an input stream, or a string.

xmlHttp.send("Hello Server");

The setRequestHeader method takes two parameters: a string for the header and a
string for the value. It sets the specified HTTP header value with the supplied string.

xmlHttp.setRequestHeader("Referrer”,"AGreatBook");

The getAllResponseHeaders method returns a string containing the complete set of
response headers from the XMLHttpRequest object after the HTTP response has come back
and containing their associated values. Examples of HTTP headers are “Content-Length”
and “Date”. This is a complement to the getResponseHeader method, which takes a param-
eter representing the name of the specific header you are interested in. The method
returns the value of the header as a string.

var strCL;
strCL = xmlHttp.getResponseHeader("Content-Length");

In addition to supporting these methods, the XMLHttpRequest object supports a num-
ber of properties, as listed in Table 1-1.

Table 1-1. The Standard Set of Properties for XMLHttpRequest

Property Description

onreadystatechange Specifies the name of the JavaScript function that the XMLHttpRequest
object should call whenever the state of the XMLHttpRequest object
changes

readyState The current state of the request (O=uninitialized, 1=loading, 2=loaded,
3=interactive, and 4=complete)

responseText The response from the server as a string

responseXML The response from the server as XML

status The HTTP status code returned by the server (for example, “404” for

Not Found or “200” for OK)

statusText The text version of the HTTP status code (for example, “Not Found”)

11



CHAPTER 1 ©' INTRODUCING AJAX

Using Visual Studio 2005

Throughout this book, you'll be using Visual Studio 2005 to develop AJAX applications
using ASPNET AJAX. Several editions of this application are available to satisfy different
needs.

You can download the free edition, Visual Web Developer 2005 Express, from the
Microsoft Developer Network (http://msdn.microsoft.com/vstudio/express/vwd). From
this page, you can also navigate to the downloads for the other Express editions, includ-
ing ones for C#, VB .NET, Visual J#, and C++ development.

You can use any edition of Visual Studio 2005, including Standard, Professional, or
one of the flavors of Team Edition, to build and run the samples included in this book.

If you are following along with the figures in this book, you'll see they have been
captured on a development system that uses the Visual Studio 2005 Team Edition for
Software Developers.

Seeing a Simple Example in Action

Understanding how this technology all fits together is best shown using a simple exam-
ple. In this case, suppose you have a client application that uses JavaScript and an
XMLHttpRequest object to issue a server request to perform the simple addition of two
integers. As the user types the values into the text boxes on the client, the page calls the
server to have it add the two values and return a result, which it displays in a third text
box. You can see the application in action in Figure 1-5.

‘@ WebForm1 - Microsoft Internet Explorer, provided by Comcast |._||E|r>__<|
File  Edit Miew Favorites Tools  Help C
flinks 1 address @ http:flocalhostatlas1-1/webForm1 . aspx V| a Go

J -J @ @ \hh pSearch *Favorites @ @v i

-

First Value |12 |

Second Value |42 |

Eeturned Total |54 |

|

&] Dare & Local intranet

Figure 1-5. The AJAX addition client


http://msdn.microsoft.com/vstudio/express/vwd

CHAPTER 1 ©' INTRODUCING AJAX

To create this client, start Visual Studio 2005, create a new web site, edit the page
Default.aspx, and set its content to be the same as Listing 1-1.

Listing 1-1. Creating Your First AJAX Application

<%@ Page language="C#" CodeFile="Default.aspx.cs" AutoEventWireup="false"
Inherits="_Default" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
<HEAD>
<title>WebFormi</title>
<script language="javascript">
var xmlHttp;

function createXMLHttpRequest() {
if (window.ActiveXObject) {
xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
}
else if (window.XMLHttpRequest) {
xmlHttp = new XMLHttpRequest();

function updateTotal() {
frm = document.forms[0];
url="Default2.aspx?A=" + frm.elements['A'].value +

"8B=" + frm.elements['B'].value;

xmlHttp.open("GET",url,true);
xmlHttp.onreadystatechange=doUpdate;
xmlHttp.send();
return false;

function doUpdate() {
if (xmlHttp.readyState==4 8& xmlHttp.status == 200) {
document.forms[0].elements[ 'TOT'].value=xmlHttp.responseText;

</script>
</HEAD>

13



14

CHAPTER 1 " INTRODUCING AJAX

<body onload="createXMLHttpRequest();">
<form>
<TABLE height="143" cellSpacing="0" cellPadding="0"
width="300" border="0" >
<TR vAlign="top">
<TD height="32">First Value</TD>
<TD><INPUT type="text" id="A" value="0"
onkeyup="updateTotal();"></TD>
</TR>
<TR vAlign="top">
<TD height="32">Second Value</TD>
<TD><INPUT type="text" id="B" value="0"
onkeyup="updateTotal();"></TD>
</TR>
<TR vAlign="top">
<TD height="23">Returned Total</TD>
<TD><INPUT type="text" id="TOT" value="0"></TD>
</TR>
</TABLE>
</form>
</body>
</HTML>

When the web page loads, the createXMLHttpRequest function is called (as a result of
setting the onload event handler in the body tag) to create the XMLHttpRequest object. After
that, whenever a key is pressed in the A or B text boxes, the updateTotal function is called
(by trapping the onkeyup event on the two text boxes).

The updateTotal function takes the values of A and B from their form elements and
uses them to build the URL to Default2.aspx, which will look something like
Default2.aspx?A=88B=3. It then calls the open method on XMLHttpRequest, passing it this
URL and indicating that this will be an asynchronous process. Next, it specifies the
doUpdate function to handle the readystate changes on the XMLHttpRequest object.

To get this application to work, add a new C# web form to the project, and leave the
default name of Default2.aspx. In the page designer, delete all of the HTML so that the
page contains just the ASPX Page directive:

<%@ Page language="C#"
CodeFile="Default2.aspx.cs”
AutoEventWireup="true"
Inherits="Default2" %>



CHAPTER 1 ©' INTRODUCING AJAX

Then add the following code to the C# code file’s Page_Load method (you can add it by
double-clicking the Default.aspx page when it is shown in the design window of Visual
Studio 2005):

int a = 0;
int b = 0;
if (Request.QueryString["A"] != null)
{
a = Convert.ToInt16(Request.QueryString["A"].ToString());
}
if (Request.QueryString["B"] != null)
{
b = Convert.ToInt16(Request.QueryString["B"].ToString());
}

Response.Write(a+b);

This handles the asynchronous request from the page Default.aspx, getting the
values of A and B, and writing the sum to the response buffer. When the XMLHttpRequest
object receives the response from Default2.aspx, it calls the doUpdate function, which
checks to see if the value of the readyState property is equal to “4,” indicating that the
request has been completed. If the value is equal to “4,” the function updates the
INPUT field named TOT with the value returned by Default2.aspx, which is stored in the
XMLHttpRequest object’s responseText property.

Summary

In this chapter, you were given a brief history of the methodologies of building user
interfaces that send data to servers for processing and the constantly swinging pendulum
from thin client to fat client. You were brought up-to-date on what the newest trend in
this development is—web-based thin clients with rich functionality—thanks to the asyn-
chrony delivered by the XMLHttpRequest object, which is the core of AJAX. You then built a
simple example that demonstrated how it works. This example was very basic and barely
scratched the surface of what can be done with AJAX. However, it demonstrated one of
the drawbacks of using this methodology; namely, that it requires a lot of scripting.
JavaScript, although powerful, is tedious to write and onerous to debug and manage
when compared to languages such as C#, VB .NET, and Java. As such, the application
benefits you receive by using an AJAX approach may be more than offset by the applica-
tion development getting bogged down in thousands (or more) lines of JavaScript.

15



16

CHAPTER 1 " INTRODUCING AJAX

With this problem in mind, Microsoft integrated the power of AJAX with the
productivity of ASPNET 2.0 and Visual Studio 2005 to develop ASPNET AJAX.
In the next chapter, you'll be introduced to the wonderful world of ASPNET AJAX. You will
look at its architecture, learn how it allows you to use Visual Studio 2005 and ASPNET 2.0
server controls to generate client-side code, and see how this can give you the best of
AJAX while avoiding the worst of it.



CHAPTER 2

Taking AJAX to the Next Level

In Chapter 1, you were introduced to the basics of how AJAX works and saw a code
example on how AJAX can be used to build a web page that responds to user input asyn-
chronously. In this chapter, you will be introduced to Microsoft’'s ASPNET AJAX, which
allows you to build AJAX applications more easily and manage their development,
deployment, and debugging using Visual Studio 2005.

ASPNET AJAX consists of two different pieces. The first is a set of script files, collec-
tively named the Microsoft AJAX Library, which gets deployed to the client. These files
implement a number of JavaScript classes that provide common functions and an object-
oriented programming framework.

The other piece of ASPNET AJAX is the ASPNET 2.0 AJAX Extensions, which includes
a set of server controls that allows you to add AJAX functionality to a web page by simply
dragging and dropping controls onto the Visual Studio 2005 page designer. Through the
use of these server controls, developers can deliver AJAX functionality to the client with-
out doing much hand-coding because the server-side ASPNET controls generate the
required HTML and JavaScript. This feature is one of the fundamental underpinnings of
ASPNET and is essential to understanding the AJAX Extensions.

In this chapter, you will first be introduced to how ASPNET server controls work.
After that, you'll be given an overview of the ASPNET AJAX architecture, taken on a tour
of the AJAX Library, and shown how the AJAX Extensions integrate with ASPNET 2.0.

Introducing ASP.NET 2.0 Server Controls

Understanding the ASPNET 2.0 AJAX Extensions and how they are architected first
requires an understanding of what ASPNET 2.0 server controls are and how they work.
Server controls are a fundamental part of the ASPNET framework. At their core, server
controls are NET Framework classes that provide visual elements on a web form as well
as the functionality that these elements offer. An example of this is a drop-down list box
control. ASPNET provides a server-side ListBox control that renders a list box as HTML

17



18

CHAPTER 2 ©" TAKING AJAX TO THE NEXT LEVEL

elements on the web page. When the web page is returned to the browser, the browser
displays the list box to the user. When the user selects an item in the list box, you can run
client-side JavaScript to handle the event locally. Alternatively (or additionally), you can
arrange for a postback to the server to happen; server-side code can handle the user's
selection and perform some related server-side operation (such as populating another
part of the web page with data relating to the user’s selection). Deciding how much func-
tionality to place client-side (in JavaScript) and server-side (e.g., in C#) is one of the key
design issues you have to address when implementing AJAX applications. We’ll discuss
this more later.

Some of the server controls are straightforward and map closely to standard HTML
tags, effectively providing a server-side implementation of those tags. Others are larger-
scale abstractions that encapsulate complex GUI tasks such as a calendar or grid. It’s
important to note that the server controls are not ActiveX controls or Java applets; the
control’s server-side code generates a combination of HTML (to display the control) and
JavaScript (to provide the client-side functionality of the code), which is rendered in the
client’s browser.

Several types of server controls exist:

HTML server controls: These classes wrap standard HTML tags. Within the ASPNET
web page (usually with the .aspx file extension), the HTML tags have a runat="server"
attribute added to them. An example is the HtmlAnchor control, which is a server-side
representation of the <a», or anchor, tag. This type of control gives the developer the
ability to access the tag’s properties from the server-side code. If you add an element
such as the following to your ASPX page, your code-behind class will have an
instance variable of the same name:

<a id="myLink" runat="server" href="MyOtherPage.aspx">Click me</a>

In this example, the code-behind class will have an instance variable named myLink,
which is an instance of the HtmlAnchor class. You can use this instance variable to get
or set properties on the hyperlink tag.

Web controls: These classes duplicate the functionality of basic HTML tags but have
methods and properties that have been standardized across the entire set of web
controls, making it easier for developers to use them. Usually web controls are pre-
fixed by asp:, such as <asp:HyperLink>. With custom web controls, however, you can
choose the prefix as well. Many of them are analogous to HTML server controls
(e.g., the hyperlink) but have methods and properties that are designed to be used



CHAPTER 2 ©" TAKING AJAX TO THE NEXT LEVEL 19

by .NET developers using C# or VB. NET. These controls also expose properties useful
to set the standard HTML attributes that ordinary HTML tags have. These properties
don’t have the same HTML tag attributes, but they are very similar. For example, the
NavigateUrl property of the HyperLink web server control will be rendered as the href
attribute of the <a> HTML tag. These controls make it easier to develop web applica-
tions for those developers who are not used to hand-coding HTML.

Rich controls: This special set of web control is complex and generates large amounts
of HTML and JavaScript. An example of this is the calendar control.

Validation controls: These controls validate user input against a predetermined
criteria, such as a telephone number or a ZIP code. Should the validation fail, they
encapsulate the logic to display an error on the web page.

Data controls: The data controls link to data sources, such as databases or web serv-
ices, and display the data that they provide. They include controls such as grids and
lists and support advanced features such as using templates, editing, sorting,
paginating, and filtering.

Navigation controls: These display site map paths (bread crumb trails) and menus
to allow users to navigate a site.

Login controls: These have built-in support for forms authentication, providing a set
of web controls for the authentication process in your web sites.

Web part controls: These allow you to build a modular user interface (UI) within the
browser that provides the user with the ability to modify the content and appearance
of a web page. These controls have been created to be used with Microsoft Share
Point 2003 and then have been included in ASPNET 2.0.

Mobile controls: These are for applications that render web content on portable
devices such as personal digital assistants (PDAs) and smart phones.

The power of server controls is best demonstrated by example. Fire up Visual Studio
2005, and create a new ASPNET web site called AJAX2. Drag a calendar from the Standard
Controls tab of the Toolbox to the design surface of the Default.aspx page that was cre-
ated for you by Visual Studio. You should have something that resembles Figure 2-1.



CHAPTER 2 ' TAKING AJAX TO THE NEXT LEVEL

o AJAN « Micrayoll Visual Studio

Fle Edt Vew Webste Buld Oebug Fomat Layout Toos Test Window Community Help

CEEERCE NI T AR T e . = KSR DN S A I NORLL AT oY N -

s By Ealizis am;.onuwwi-ﬁﬂi
ieded k%, e -
Bt o} @ o AloD G
ogpiruaes || £ December 2006 > (23 Sokton ASAX (1 project)

Sun Mon Tue Wed Tha Fri Sat = @"ﬁ‘ﬂ:’:"’m‘\m’
i Tl % 17 8 9 30 01 2 & £Y efakagn

i} Btion 3 4 5 & 7 E 9

(] unkptzan 10 11 12 13 14 15 16

(3] magesutien 17 13 19 20 21 2 1

A Hypatik 4 025 2% 27 M 29 W0

i1 2 3 4 5 é

Ikl e

Sapatng g0

woewisn pus pul 4 R

1 =
==y =

S Tookor v St | W nnce v |3 Do | 5 soure | [1[SBodys) €| [Cmprie s ety
ororim -4 =
[ 0] [ 6 e[ wessges

Description e ne Comn  Project

& trvor st T3] Cutgut [ Pl Reessats 3| 20 Freed Symind Rt
== ~
Feady

Figure 2-1. Adding a calendar to the default form

If you change to source view, you will see very straightforward markup, and there
isn't a whole lot of it—certainly not enough to render the calendar, much less the interac-
tivity of selecting dates and paging backward and forward through the months. You can
see the markup in Figure 2-2.



CHAPTER 2

TAKING AJAX TO THE NEXT LEVEL

Default.aspx™| StartPage - X
Client Objects & Events [ | (No Events) -
<¥@ Page Langusge="C#" AutoEventulireup="true™ CodeFile="Default.aspx.cs™ Inherits="_Default™ %» =
<!DOCTYPE html PUBLIC ™-//W3C//DTD XHTML 1.8 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">
B <html xmlns="http://www.w3.0rg/1999/xhtml" >
4 <head runat="server">
| <titlesUntitled Page</title>
- </head>
[
ody >
<form id="forml" runat="server">
<div>
‘ <asp:Calendar ID="Calendarl” runat="server“></asp:Calendar>
+ </div>
m
L ¢/html>
v
< >

3 Design <html>| <body> | <form#formi>

Figure 2-2. Inspecting the markup for the calendar page

The implementation of the calendar is encapsulated within the asp:Calender tag:

<asp:Calendar ID="Calendar1" runat="Server"></asp:Calendar>

Visual Studio invokes code within the Calendar server control class to create the

visual representation in the designer view of the integrated development environment
(IDE). Similarly, at runtime, the ASPNET engine detects the <asp:Calendar> tag and
invokes code within the Calendar server control class to generate the HTML necessary to
render the calendar in the browser and the JavaScript that provides its functionality. Fig-

ure 2-3 shows the page being rendered in Internet Explorer.

21



CHAPTER 2 ' TAKING AJAX TO THE NEXT LEVEL

(f: Untitled Page - Windows Internet Explorer

> R !;_ http:/flocalhost/AIAX2/Default.aspx V| | X i | 2~

File Edit View Favorites Tools Help

W ke |EUnﬁﬂed Page | | @2-8 L= TR«

< December 2006 >
Sun Mon Tue Wed Thu Fri Sat
26 27 28 29 30 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
¥ 18 19 20 2¢ 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6

S Localintranet # 100% -

Figure 2-3. Viewing the calendar page in a browser

By clicking the Browser’s View » Source menu item, you can inspect the combina-
tion of HTML and JavaScript that was generated by the server control (see Figure 2-4).
You can see that it is vastly different from what was shown at design time in Figure 2-2.
The <asp:Calendar> tag has been replaced by a <div> tag that encapsulates the HTML.
This lays out the calendar as a table—showing the days, dates, and month; and the
JavaScript that handles the links to move forward and backward by month.



CHAPTER 2 ' TAKING AJAX TO THE NEXT LEVEL

MNotePad+ - [Default[1]] IZHEIEI

D[] Sl=| 4] &[5 x|

A

EIWNEEA

| >

<!DOCTYFE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/zhtml1/DID/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.org/199%/xhtml"” >
<head><title>
Untitled Page

</title></head>
<body>

<form name="forml"™ method="post" action="Default.aspx" id="forml™>
<div>
<input type="hidden™ name="_ EVENTTARGET" id="_ EVENTTARGET"™ value="" />
<input type="hidden™ name="_ EVENTARGUMENT™ " EVENTARGUMENT™ walue="" />
<input type="hidden™ name="_ VIEWSTATE" id="_ VIEWSTATE" value="/WEPDWULLTEzNjg5MjRxMzhkZIccGSmZgESpILIadp/z79xdg5J6" />
</div»

<gcript type="text/javascript™» =
<
var theForm = document.forms["forml'];
if ('theForm) |
theForm = document.forml;
}
function __doPostBack (eventTarget, eventArgument) {
if (!theForm.onsubmit || (theForm.onsubmit() != false)) [
theForm._EVENTTARGET.value = eventTarget;
theForm._ EVENTARGUMENT.value = eventArgument;
theForm.submit () ;
}
}
Ho-=>
</script>

<div>
<table id="Calendarl™ cellspacing="0" cellpadding="2" title="Calendar™ border="0" style="border-width:lpx;border-

style:solid;border-collapse:collapse;™>

<tr><td colspan="7" style="background-color:5ilwver;"><table cellspacing="0" border="0" style="width:100%;border-
collapse:collapse;™>

<tr><td style="width:15%;"><a href="javascript:__ doPostBack('Calendarl’,'V2496")" style="color:Black" title="Go to the

previcus month™>slt;</a></td><td align="center” style="width:70%;">December 2006</td><td align="right" style="width:15%;"><a
href="javascript:__ doPostBack('Calendarl’,'V2557")" style="color:Black" title="Go to the next month">sgt;</a></td></tr>

</table></td></tr><tr><th align="center” abbr="Sunday" scope="col">3un</th><th align="center" abbr="Monday" scope="col">Mon v

Unchanged INS Line 1, Column 1

Figure 2-4. Viewing the client-side code behind the calendar page

This is an example of the power of server-side controls, and it is with controls such
as these that you can deliver AJAX functionality to the browser without overly complex
hand-coding, as demonstrated in Chapter 1. You will also be able to take advantage of
using a professional IDE so that you can debug and manage your AJAX pages as easily as
standard web forms or Windows applications.

These two concepts have been the premier design goals of ASPNET AJAX. It is well
understood that creating AJAX-based web applications can be complex and requires
extensive knowledge of client-side script, which is slow to develop and debug. Microsoft
has reinvented how AJAX applications can be developed by allowing web developers to
use the same familiar productivity features and IDE of Visual Studio 2005 that they use to
develop standard web applications.

23



24

CHAPTER 2 ©" TAKING AJAX TO THE NEXT LEVEL

Synchronous vs. Asynchronous Web Applications

One of the biggest limitations of web applications has always been that they are not
dynamic and responsive. For example, consider the case of implementing a simple finan-
cial portal. When you change the company you want to inspect, several areas of the page
update to display the new company’s information. Consider the scenario where the user
decides he wants to see more detailed information on the current company and clicks
the button to retrieve it. You want this new information to appear on the same page but
don’t want to refresh the whole page to get it—you just want it to appear. Even if the
round-trip to the web server is fast, the entire page will “blink” as the new data is ren-
dered. The browser will clear and redraw the entire page, even though most of it doesn’t
change.

Using AJAX, you can implement a solution that simply displays a visual indicator that
the data is being loaded while it is being retrieved in the background. Although the oper-
ation of retrieving and displaying the data takes about the same amount of time, the
second example provides a much more dynamic look and feel. The user is still in control
while the data is being retrieved. At any time, he can enter the code for a new company
and retrieve its information without waiting for the first company’s data to be loaded.

AJAX applications typically use HTML, JavaScript, and the associated technologies
DHTML and Cascading Style Sheets (CSS) to build Uls. When the interfaces need to
change dynamically, a call to the server is usually made using the XMLHttpRequest object.
The server returns new HTML markup for the bit of the page that needs to be updated,
which gets inserted into the DOM and re-rendered by the browser.

Part of the problem with this approach is that it doesn’t provide a clean separation of
the presentation and the business logic. The server that manages the data also generates
the Ul, and the presentation layer (e.g., the browser) dumbly inserts what the server dis-
patches to it. For example, the server could generate HTML markup for a table that
displays data for the company selected by the user. Of course, the server could simply
send the data instead of the HTML markup, but it is generally more onerous to have
JavaScript parse data and generate the HTML than it is to generate the HTML on the
server side where you can use the power of Visual Studio and C# or VB .NET—or indeed
Java and any Java IDE.

ASPNET AJAX follows the model in which the data is managed on the server, where it
belongs, and the presentation, after the initial rendering, is handled by the components
and controls that run within the browser. Controls and components are higher-level
abstractions that fall into two categories:

* Components are reusable building blocks that can be created programmatically
using client-side script.

e Controls are server controls, which are rendered as HTML and the JavaScript that
provides the functionality of the UL



CHAPTER 2 ©" TAKING AJAX TO THE NEXT LEVEL

Introducing the ASP.NET AJAX Architecture

The ASPNET AJAX architecture, which is illustrated in Figure 2-5, consists of two major
pieces. First is the Microsoft AJAX Library, which makes developing the client-side func-
tionality of AJAX web applications easier and less time consuming. It has core classes that
extend JavaScript to support object-oriented (OO) scripting represented by the Core Ser-
vices block. It also consists of a base class library, which provides classes that offer
extended error handling among other things. There is a network layer (represented by the
Networking block in Figure 2-5) that provides asynchronous communication with web
and application services, and a Ul layer that supports capabilities such as controls and
behaviors (the Components block). Finally, it is supported across multiple types of
browsers through the use of a browser compatibility layer—the Browser Compatibility
block in Figure 2-5—that sits at the bottom layer of the script library. It supports most
modern browsers, including Mozilla/Firefox, Safari, Opera, and, of course, Internet
Explorer. The Microsoft AJAX Library is covered in detail in Chapter 3.

Second are the ASPNET 2.0 AJAX Extensions, which provide a server development
platform that integrates AJAX and ASPNET 2.0. Together, they provide a powerful pro-
gramming model that allows the development of AJAX functionality using the same
mechanism that is already in place for developing standard ASPNET web applications.
This eliminates much of the tedious and burdensome scripting associated with the
development of AJAX applications today. Finally, it makes it very easy to AJAX-enable
your existing ASPNET applications. The ASPNET 2.0 AJAX Extensions are discussed in
detail in Chapter 4.

Client Server
Microsoft AJAX Library ASP.NET AJAX Extensions
Components Script Support
Mon-visual Components, Localization, Globalization,
Behaviors, Controls Debugging, Tracing

BIVAT0: CompntiniLy Web Services

Support for Microsoft Proxy Generation, Page
Internet Explorer, Mozilla Methods, XML & JSON
Firefox, Apple Safari Serialization
MNetworking

Application Services

Asynchronous Requests, AT 3
¥ 1 Authentication & Profile

XML & JSON Serialization,
Web & Application Services

Server Controls
Core Services ScriptManager, UpdatePanel,
JavaScript Base Class UpdateProgress, Timer
Extensions, Type System,
Events, Serialization

Figure 2-5. The ASPNET AJAX architecture

25



26

CHAPTER 2 ©" TAKING AJAX TO THE NEXT LEVEL

With the ASPNET 2.0 AJAX Extensions, the process of developing an AJAX application
is similar to what is done today to build an ASPNET web forms application. Server con-
trols generate the HTML Ul as well as the JavaScript functionality, and the AJAX-enabled
pages run within the browser by leveraging the AJAX Library. The result is rich client-side
functionality within the browser. These server controls can also connect directly to
ASPNET Web Services using JavaScript service proxies to provide a richer experience on
the client.

This architecture allows for increased productivity because server controls generate
much of the code, which enables you to write fewer lines of JavaScript code. It allows for
the clean separation of content, style, behavior, and application logic. A typical design
pattern of an ASPNET AJAX application involves it consuming web services directly from
the client without requiring postbacks to the web server. Not only do postbacks slow
down an application, but they also complicate the application design, implementation,
and deployment. In fact, if you don’t use the AJAX functionalities, you have to post the
page back to the server (for example, because the user clicks the button where you have
inserted the code to call the Web Service method). The page is loaded again and then the
button click event handler is called. In the event handler code, there is the creation of the
object from the proxy class referenced to the web service. When the method is called,
another HTTP request is accomplished. When using AJAX, just the last operation is done,
and alot of time and TCP traffic is saved.

An Overview of the AJAX Library

The AJAX Library provides a powerful JavaScript programming model with a rich type
system. JavaScript supports the basic concept of classes but doesn’'t offer many of the
constructs needed for OO programming, nor does it provide a robust type system. To
allow developers to create more readable and maintainable code, the AJAX Library
extends JavaScript to support namespaces, classes, interfaces, inheritance, and other
artifacts that are usually associated with modern high-level languages such as C# and
Java.

The AJAX Library also includes a Base Class Library with helper classes that provides
additional functionality to JavaScript, such as extended error handling, debugging, and
tracing. In the next version of Visual Studio (code named Orcas), Microsoft will be adding
support for JavaScript developers such as doc comments, Intellisense, and debugging.
The AJAX Library incorporates some of the functionality that will be needed to support
this functionality.

One of the important aspects of ASPNET is that it provides a mechanism for develop-
ers to globalize (i.e., date formats, etc.) and localize (i.e., string translations) their web
applications to support different languages based on the user’s browser setting. The AJAX
Library also provides this mechanism. Globalization is supported through the Base Class
Library’s Sys.CultureInfo class and the localFormat method on the number, date, and
string types. Localization is supported through a combination of the Sys.CultureInfo



CHAPTER 2 ©" TAKING AJAX TO THE NEXT LEVEL

class and the ability to load JavaScript files at runtime: By having a set of equivalent
JavaScript files in different languages, you can load the one that is applicable.

The ASPNET AJAX installation package, which can be downloaded from
http://www.asp.net/ajax/, includes both the client-side and server-side portions.
However, the AJAX Library is also offered as an independent download. The client-side
portion of ASPNET AJAX can be used independently of the server-side portion, which
means you can develop AJAX applications using the Microsoft AJAX Library and host
them on non-Microsoft web servers. However, it is important to note that although the
AJAX Library can be used without the ASPNET 2.0 AJAX Extensions, there are aspects
of the library that work in conjunction with ASPNET 2.0 to make client-side development
even easier and more productive. An example of this is the ability to leverage the
ScriptManager server control to make the retrieval of the correct version of a localized
JavaScript file automatic.

The Microsoft AJAX Library and Web Services

The AJAX Library has a client-side networking stack built upon the XMLHttpRequest object
that provides access to server-based functionality. Although designed to access ASPNET
ASMX (Active Server Methods) web services, it may also be used to access static web
content. This functionality is supported via classes within the Sys.Net namespace.

These classes, designed to work across all of the major browsers, abstract the use of the
XMLHttpRequest object and provide a consistent programming model that allows you to
build AJAX applications that access web resources regardless of the platform they are
running on.

To simplify access to ASPNET Web Services, ASPNET AJAX provides a web services
bridge, which allows services to be accessed directly from JavaScript via a function call.
It does this by generating a JavaScript proxy that gets downloaded to the client when the
service is invoked using a special URI. The proxy, which provides the interface between
the client and the web service, is generated by an HTTP handler provided by the ASPNET
2.0 AJAX Extensions and leverages the Sys.Net classes supplied by the AJAX Library. It is
invoked by appending /js to the service URI like this:
http://servername/servicename/service.asmx/js. By adding the HTML tag <script
src="http://servername/servicename/service.asmx/js"></script> to a web page, the
JavaScript is downloaded to the client, and the service can be invoked asynchronously
by calling one of its methods using the format service.method(..).

So if you have wrapped or exposed your middleware as a web service using the .NET
Framework, it can now be accessed asynchronously from the browser using ASPNET
AJAX. In the past, a web application would have to perform a postback to the server,
which would access the web service on its behalf and then return the results to the web
application all while the user waited for the web page to be refreshed. You'll see examples
of this in Chapters 3 and 8.

27


http://www.asp.net/ajax
http://servername/servicename/service.asmx/js
http://servername/servicename/service.asmx/js
http://www.asp.net/ajax
http://servername/servicename/service.asmx/js

28

CHAPTER 2 ©" TAKING AJAX TO THE NEXT LEVEL

JavaScript Object Notation (JSON)

To allow for a more efficient transfer of data and classes between web applications and
web services, ASPNET AJAX supports the JavaScript Object Notation (JSON) format. It is
lighter weight than XML (Extensible Markup Language)/SOAP (Simple Object Access
Protocol), and delivers a more consistent experience because of the implementation
differences of XML/SOAP by the various browsers.

JSON is a text-based data-interchange format that represents data as a set of ordered
name/value pairs. As an example, take a look at the following class definition, which
stores a person’s name and age:

Public class MyDetails

{
Public string FirstName;
Public string LastName;
Public int Age;

}

A two-element array of this object is represented as follows:

{ MyDetails : [ { “FirstName” : “Landon”, “LastName” : “Donovan”, “Age” : “22”}
{ “FirstName” : “John”, “LastName” : “Crieb”, “Age” : “46”}

An Overview of the ASPNET 2.0 AJAX Extensions

The ASPNET 2.0 AJAX Extensions integrate AJAX and ASPNET 2.0 by providing a set of
AJAX server controls that can be dragged and dropped onto a web page in the same way
as any ASPNET 2.0 server control. Each server control encapsulates the rendering
(HTML) and programming (JavaScript) that is necessary to perform its function. As you
can imagine, this significantly reduces the amount of effort that is required to develop
AJAX web applications.

The most powerful server control that the ASPNET 2.0 AJAX Extensions provide is the
UpdatePanel. By “wrapping” existing content from your current ASPNET web applications
within an UpdatePanel tag, the content can then be updated asynchronously from a user’s
browser without a complete page refresh. In other words, putting the current HTML of an
ASPNET page within the start and end UpdatePanel tags allows you to implement AJAX
functionality without knowing anything about the XMLHttpRequest object or JavaScript.
The significance of this cannot be overstated: existing web pages can easily be converted
to AJAX applications through the use of asynchronous partial-page updates!



CHAPTER 2 ©" TAKING AJAX TO THE NEXT LEVEL

In addition to server controls, the ASPNET 2.0 AJAX Extensions also provide infra-
structural support such as the Scripthandlerfactory HTTP handler that was mentioned
previously, which supports the creation of JavaScript proxies for ASPNET Web Services.
There is also an HTTP handler that caches and compresses the JavaScript files that make
up the AJAX Library. Another piece of functionality that the AJAX Extensions provides is
JSON serialization and deserialization.

ASPNET 2.0 introduced a Membership service, which provides a forms authentica-
tion and user management framework, and a Profile service, which supports long-term
storage of users’ preferences and data. The ASPNET 2.0 AJAX Extensions expose the
authentication portion of the Membership service and the Provider service as web
services. These services can be leveraged by the AJAX Library. The library’s
Sys.Service.Authentication class provides the ability to log users on to their site using
forms authentication, without requiring a postback to the server. Similarly, the library’s
Sys.Service.Profile class provides for asynchronous storage and retrieval of user set-
tings, such as the site theme. By avoiding postbacks to a web server, even while logging
on to your web site, users will perceive your site as being dynamic rather than just
another static web application.

Summary

A lot of this may not make much sense right now, but don’t worry if you didn't under-
stand all the details we've just discussed. As you work through the examples in this book
and see how elegantly ASPNET AJAX script interacts with the underlying HTML and
understand how the server-side controls eliminate much of the manual scripting, it will
become much clearer.

In this chapter, you were introduced to the overall architecture of ASPNET AJAX,
given a tour of the various features the architecture offers, and introduced to how it can
empower the development of richer browser-based clients.

ASPNET AJAX is based on two pillars. The first pillar is the client-portion, Microsoft’s
AJAX Library, which encapsulates many common functions, provides an object-oriented
programming environment for JavaScript developers, and enables access to ASPNET
Web Services. The second pillar is the ASPNET 2.0 AJAX Extensions, which is a set of
server controls that implicitly generates the JavaScript code that is needed to implement
your AJAX application on the client.

In the next chapter, you'll see in more detail how the AJAX Library makes writing the
JavaScript portion of your AJAX applications much easier and how the different aspects
of the library come together to provide a unified design and coding framework. You'll also
get an overview of each of the library’s namespaces and their associated classes and will
learn about details of the object-oriented environment it provides, with features such as
types, namespaces, and inheritance.

29






CHAPTER 3

The Microsoft AJAX Library:
Making Client-Side JavaScript
Easier

In the first two chapters, you began to get a sense of the power of AJAX and Microsoft’s
implementation: ASPNET AJAX. In addition, you were shown how asynchronous
JavaScript and XML can make ordinary web applications more interactive and respon-
sive. Chapter 2 provided an overview of ASPNET 2.0 and, in particular, server controls,
which simplify web development by giving developers the ability to drag and drop rich
controls such as calendars or data grids into web pages. By integrating AJAX with
ASPNET 2.0 and Visual Studio 2005, Microsoft has greatly simplified the process of
developing, deploying, and debugging AJAX web applications. The second chapter also
introduced the features of the client-side aspect of ASPNET AJAX: the Microsoft AJAX
Library. This chapter delves more deeply into the AJAX Library, demonstrating the object-
oriented programming paradigm it overlays on JavaScript and then providing some
examples of the different namespaces it offers.

JavaScript with the Microsoft AJAX Library

In the following sections, you'll learn how to program JavaScript using the Microsoft AJAX
Library by creating your first ASPNET AJAX-enabled application.



32

CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

Downloading and Installing ASP.NET 2.0 AJAX Extension 1.0

To use the Microsoft AJAX Library in your web applications, you must first download the
ASPNET 2.0 AJAX framework from the ajax.asp.net web site. After clicking on the Download
link, you can choose either the ASPNET 2.0 AJAX Extension 1.0 or Microsoft AJAX Library
options. Choose the first option because the Microsoft AJAX Library option contains just
the client JavaScript components that are included in the full ASPNET AJAX installation.
On the other hand, besides the client JavaScript components, the ASPNET 2.0 AJAX
Extension 1.0 option also allows developers to use Visual Studio 2005 to create ASPNET
AJAX web applications easily. Moreover, the libraries contained in the ASPNET AJAX
Extension 1.0 are needed to use the ASPNET AJAX Controls Kit.

After downloading the ASPNET AJAX Extension 1.0 setup, you can simply run the
executable and follow the easy wizard’s steps. The installer will add all the necessary files
and Visual Studio 2005 templates to use ASPNET AJAX in your web applications.

Creating Your First AJAX Application

To get started, fire up Visual Studio 2005, and create a new AJAX web site by selecting
File » New Web Site and then selecting ASPNET AJAX-Enabled Web Site from the New
Web Site dialog box (see Figure 3-1).

When you click OK, Visual Studio 2005 creates a new solution for you that contains
everything you need to get started with ASPNET AJAX. You can see the structure it sets
up in Figure 3-2. The web site is very straightforward; there is a default web page named
Default.aspx, a Web.config file, and an empty App_Data folder that can be used to store
any databases or data files used by the web site.

So what makes this an ASPNET AJAX-enabled web site? Well, the work is all done for
you behind the scenes. When ASPNET AJAX is installed, the assembly that provides its
functionality—System. Web. Extensions—was stored in the Microsoft .NET Global Assembly
Cache (GAC). When you created your web site, a reference to this assembly was added to
the web site’s Web.configfile. Several other additions were also made to the Web.config file,
including several sections that are commented out, which may optionally be used to pro-
vide additional functionality such as the Profile and Authentication services. All of this will
be covered in more detail in the next chapter when we dive into the ASPNET 2.0 AJAX
Extensions.



CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

New Web Site IEIEI
Templates: ! ,_ -:

Visual Studio installed templates

EAASP.NET Web Site
- ASP.NET AJAX-Enabled Web Site

% Empty Web Site
My Templates

3 AJAX Control Tookit Web Site

2, ASP.NET Web Service

% Personal Web Site Starter Kit

A ASP.NET Corporate Web Site Tem... GSearch Onine Templates...

ASP.NET AJAX-enabled Web site

Location: | HTTP

V| | http://localhost/ AJAXEnabledWebSite

v

| Browse...

Language: |V\sua| Cc# & |

OK

H Cancel ]

Figure 3-1. Creating a new ASPNET AJAX-enabled web site

Note The web sites are created on HTTP because | have IIS installed on my development computer. If you
don't have it, choose File System from the Location drop-down list, and specify a location somewhere on
your hard disk. (It doesn't affect the example whether you use HTTP or the file system.)

Solution Explorer - http:/flocalhost/AJAXEnable... » = X
2 e & @@

[ Solution 'AJAXEnabledwebsite' (1 project)

B :/localhost/ AIAXEnabiedwebsite/
- L3 App_Data

- [F] Default.aspx

- %] Default.aspx.cs

= Web.config

Figure 3-2. Default ASPNET AJAX-enabled web site solution structure

33



34

CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

The Microsoft AJAX Library contains three core JavaScript files that deliver client-
side functionality for your web pages. These three JavaScript files are stored as resources
in the System.Web.Extensions assembly. At runtime, the HTTP handler ScriptResourceHan-
dler loads the files, caches them for future use, compresses them, and sends them to the
web browser when they’re requested. The files contain the following functionality:

¢ The primary file, named MicrosoftAjax.js, contains 90% of the Microsoft AJAX
Library’s functionality. It includes, among other things, the browser compatibility
layer, the core JavaScript classes, and the Base Class Library.

e The second file, named MicrosoftAjaxTimer.js, contains classes needed to support
the Timer server control. This control enables you to update either part of or an
entire web page at regular intervals; for example, you might want to update the
current value of stock prices every 30 seconds. You'll see how to use the Timer con-
trol in the next chapter.

¢ The third file, named MicrosoftAjaxWebForms.js, includes classes that support par-
tial-page rendering, that is, the functionality that allows portions of a page to be
updated asynchronously. Without that, the whole page is postbacked to the server.

Adding a Custom JavaScript Class

Now that you've created your AJAX-enabled web site, you will create your own JavaScript
file that defines a namespace, which contains the class definition for a car. As you will see
in the next few sections, the AJAX Library brings object-oriented programming (OOP) to
JavaScript by providing namespaces, inheritance, interfaces, and other features. If you
are familiar with the OO paradigm, then the advantages are obvious. If not, you will start
to see how namespaces and inheritance make code simpler to write, debug, and under-
stand.

To create the JavaScript file, right-click the project within Solution Explorer, and click
on Add New Item (see Figure 3-3).



CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER 35

Solution Explorer - http: /localhost/aJAXEnabledwebsite/

2 5 ER] S Be

| [ Solution 'AJAXEnabledWebSite’ (1 project)

B E hl:tp:HIol
ET’ = A Build Web Site
-5 App_Ci
& We | Publish Web Site
3 App_D,
- [ Defas [l add Ny Ttem...
¥ De| [ Add Existing Item...
5 Web.og
] Webse New Folder
Add ASP.NET Folder 3
Add Reference...
Add Web Reference...

51 View Class Diagram
5] Copy Web Site...
Start Options...
Set as StartUp Project
fl View in Browser
Browse With...
E Refresh Folder
&

Cut

>< Remove

Property Pages

Run Code Analysis on Web Site

Figure 3-3. Adding a new file to your solution

In the dialog box that is displayed, select the JScript File template, and enter a name
for the file. In this example, the name AJAXBook.js was used, but you may call it anything
you like (see Figure 3-4).



36

CHAPTER 3

THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

Add New Item - http://localhost/AJAXEnabledWebSite/

|
Templates: [ El
Visual Studio i lled t A
[T5] Web Farm [ Master Page -] Web User Contral
ﬂ HTML Page gj Web Service '-"f;] Class
AJ Style Sheet %3 Global Application Class _g;;Web Configuration File
|29 XML File |&] XML Schema =) TextFile
\FaResource File | J 5QL Database | ] Dataset
) Generic Handler |£2] Site Map ‘ﬂ‘\Mobile Web Form =
gi_]\c'BScript File i—.] Report ;-=§]J5cript File
& Mobile Web User Contral ifMobiIe Web Configuration File _-.’-'IJ X5LT File
2y skin File ©] Browser File 2] Class Diagram
My Templates
__J Search Online Templates. .. :
A saript file containing JScript code
Mame: | AJAXBook.js|
[ Add ] [ Cancel

Figure 3-4. Creating a new JavaScript file

You can now add the code that implements the namespace AJAXBook and the class
Car. When you use Visual Studio 2005 to create and edit JavaScript code, it provides syn-
tax coloring to make the code easier to understand and maintain. Unfortunately, Visual
Studio 2005 doesn’t add Intellisense; in other words, when you say “Type,” it doesn't
bring up a list of members on the Type type.

Figure 3-5 shows the namespace AJAXBook and the class definition for Car in the editor.



CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

AJAXBool{Open Fie (Cirl+0) =

x| X

Type.registerNamespace ("AJAXBook™);

AJAXBook.Car = function(strMake, striodel, str¥ear)
this. Make = striake;
this. Model = strifodel;
this._vear = stryear;

3

RJAXBook.Car.prototype =

{

get_Make: function()

return this. Make;

b
get_Model: function()

return this. Model;

T
get_MakeandModel: function()

return this. Make + ™ " + this. Model;

s
get_Year: function()

return this._Year;

b
dispose: function()

alert("Bye");
)
3

AIAXBook. Car. registerClass("AJAXBook. Car™);
Figure 3-5. Implementing your namespace and class in JavaScript

You'll learn what all this syntax means later in this chapter, but it will make more
sense if we run through the entire example first.

Using the AJAX Script Manager to Deliver Your Custom Class

To implement a web page that uses this class, add a new web form to the solution, and
call it TestAJAXBookNamespace.aspx (see Figure 3-6).

Note The Default.aspx page already contains the ScriptManager server control, but we’ll use a new
page to show how to add the control to a new page.

To this web form, you will add an ASPNET AJAX ScriptManager server control. This
server-side control manages the downloading of the Microsoft AJAX Library JavaScript
files to the client so that the support for your AJAX code will be available when the user
opens the web page. In addition, it will load any of your custom JavaScript files. The easi-
est way to add the server control to your web page is by simply dragging and dropping it
on the page designer.

37



38

CHAPTER 3 © THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

Add New Item - http://localhost/AJAXEnabledWebSite/

Templates: ||
Visual Studio i lled I |
5] Web Form [ Master Page [B=] Web User Contral
[#] HTML Page ] Web Service ] Class
&:] Style Sheet *] Global Application Class ig_'-;Web Configuration File
|2} XML File |&] XML Schema =] TextFile
|ZaResource File | | 5QL Database |2 Dataset
g Generic Handler .ﬁ] Site Map Iﬂ‘“MOb“E Web Form =
£5]VBScript File £5]35cript File
-Eﬁ_:':‘\MobiIe Web User Contral gMobile Web Configuration File l_L,’JJ XSLT File
E}Skjn File LEJE!rowser File ﬂ Class Diagram
My Templates
—_..I.I Search Online Templates... :

A form for Web Applications
Name: | TestAJAXBook £, 350K
Language: |\ﬁsua| c# v_| Place code in separate file
[ select master page
[ ad ][ canel |

Figure 3-6. Adding a web form to test your JavaScript

You'll now see the suite of ASPNET AJAX server controls in your Toolbox installed
into Visual Studio 2005 (see Figure 3-7). Drag and drop the ScriptManager control onto the
designer for TestAJAXBookNamespace.aspx (or whatever you called the web form). Also
drag and drop (from the HTML tab) an Input (Button) control to the web page. You can
see the result in Figure 3-8.



CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

1x

Toolbox

[E_A3AX Extensions
k Painter
Timet
|_cb ScriptManager
E ScriptManagerProxy
ﬂ UpdateProgress
&1 UpdatePanel

There are no usable controls in this group. Drag
an item onto this text to add it ko the toolbox,

tample - Micros...

Figure 3-7. The ASPNET AJAX server control within the Toolbox

5 TestAJAXBookNamespace.aspx™®

Iﬂ'pcrir.vl:l\lai nager - SciptManagerl

[ Source | [4] <body>.: <input£buttonis|

Figure 3-8. The ScriptManager server control and HTML button in the Visual Studio 2005

Designer

39



40 CHAPTER 3 © THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

Coding and Running the Application

If you double-click the button in the designer, Visual Studio 2005 will add the onclick
attribute to the <input type="button"> HTML element, set its value to return
Button1 onclick(), and implement the stub of the function Button1_onclick inside a
<script> element within the HTML head element.

You can then put the following script into this function:

var testCar = new AJAXBook.Car('Honda','Pilot','2005');
alert(testCar.get MakeandModel());

alert(testCar.get Year());

return false;

The last step is to tell the ScriptManager to download your custom JavaScript file by
adding the following HTML inside the <ScriptManager> element:

<Scripts>
<asp:ScriptReference Path="~/AJAXBook.js" />
</Scripts>

You can see the HTML of the complete web page in Figure 3-9.

TestAJAXBookHamespace.aspx* |
Client Objects & Events % | | (No Events)

<%@ Page Languoge="G¥" AutoEventiireup="true" CodeFilc="TestAJAXBookNamespace.aspx.cs" Inherits="TestAJAXBookNamespace” %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.8 Transitional//EN" “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

B <html xmlns="http://www.w3.0rg/1999/xhtml" >

& <head runat="server">

| esUntitled Page</title>

guage="javascript” type="text/javascript"s

function Buttonl onclick() {
var testCar = new AJAXBook.Car('Honda','Pilot’,’'2885');
alert(testCar.get MakeandHodel());
alert(testCar.get Year());
return false;

| ¥

/711>
F</script>
1-</head>
B <body>
=) <form id="forml" runat="server">

<div>
<aspiScriptManager ID="ScriptManagerl” runat="server">
<Scripts>
<asp:ScriptReference Path="w~/AJAXBook.js" />
</scripts>
</asp:Scri

ptHanager>

</div>
<input id="Buttonl" type="button" value="button" onclick="return Buttonl onclick()" />
</form>
-</body>
- </html>

Figure 3-9. The HTML for your first ASRNET AJAX web page

->L( X



CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

Now run your application by pressing the F5 key. You'll be asked if you want to
modify the Web.config file to enable debugging. After you click OK, your default web
browser will open, and you'll see a pretty dull-looking web page with a single button that,
when clicked, returns the values for the properties of make, model, and year for this
instance of a Car object. In Figure 3-10, you can see the partial output of this application
because just the first message box has been captured (after closing this message box, the
other showing the year will be shown).

(— Untitled Page - Windows Internet Explorer ];HE|E]

y - !E http:/flocalhost/AJAXEnabledWebSite [TestAJAXBookMNamespace. aspx V| b < I | 2~

53

© CodePlex | CollabNet @] Connect DNSDNSStff &|XMS @ GED @B MSDN | Planview @ Premier DScn'ptCenher

W oW |eUnﬁﬂedPage I | @28 dmh - (b -

Windows Internet Explorer E|

! E Honda Pilot
.

Done 84 Local intranet *100% -

Figure 3-10. Running your first ASPNET AJAX application that uses JavaScript classes and
namespaces

Using Namespaces and Classes in JavaScript

The AJAX core classes (MicrosoftAjax.js) contain the facility to register namespaces and
classes using the Type.registerNamespace and Type.registerClass methods. You can use
these to build objects in JavaScript and assign them to the namespaces for clearer, easier-
to-read, and easier-to-debug code. Listing 3-1 shows the definition of the Car class you
used earlier. This class is registered to the AJAXBook namespace.

41



CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

Listing 3-1. Creating a Car Namespace

Type.registerNamespace("AJAXBook");

AJAXBook.Car = function(strMake, strModel, strYear)

{
this. Make = strMake;

this. Model = strModel;
this. Year = strYear;

};

AJAXBook.Car.prototype =

{
get Make: function()

{

return this. Make;

1

get Model: function()
{

return this. Model;

1

get MakeandModel: function()
{

non

return this. Make + + this. Model;

b

get Year: function()
{

return this. Year;

1

dispose: function()
{
alert("Bye");
};

AJAXBook.Car.registerClass("AJAXBook.Car");



CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

In the code, the namespace AJAXBook is registered using the Type.registerNamespace
method. .registerNamespace command. Next, the class Car is implemented using the proto-
type model. In the prototype model, a class consists of two parts: the constructor, which
initializes the private variables, and the prototype, which is used to declare the methods
of the class and the dispose function in which you can perform any cleanup before your
object is reclaimed. It is important to note that in the prototype model, the notion of pri-
vate is handled by using variables that are prefixed with the underscore (_) character.

Finally, the class is registered to the namespace using the AJAXBook.Car.registerClass
method, which, in this case, takes a single parameter: the fully qualified name of the
class. Now any JavaScript that includes this JavaScript file will be able to create an
instance of an AJAXBook.Car object by using script such as the following:

var testCar = new AJAXBook.Car('Honda', 'Pilot', '2005');
Your code can then invoke methods on this object in the usual manner:

alert(testCar.get Year());

Using Inheritance in JavaScript

In the previous section, you registered your class using the registerClass method proto-
type that accepts only a single parameter. You can also include a second parameter that
specifies the base class from which the class is inheriting. One of the goals of AJAX is to
make your JavaScript easier to read and debug. Inheritance is a useful way to prevent
replication of member variables and methods among your classes, thereby helping you
to achieve this goal.

This is probably best demonstrated by example. Earlier you created a Car class for a
generic car. Lots of different types of cars exist; for example, a sport utility vehicle (SUV)
is different from a sports car in that it will usually have four-wheel drive (4WD), whereas
the sports car will have only two-wheel drive. If you want to implement car classes where
you will query if the car has the 4WD, it makes sense to have a subclass of Car called Suv
that has a 4D property.

You can try this by adding the following code to the bottom of the JavaScript file you
created earlier:

AJAXBook.SUV = function(strMake, strModel, strYear, strDriveType)

{
AJAXBook.SUV.initializeBase(this, [strMake, strModel, strYear]);

this. DriveType = strDriveType;

43



44 CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

AJAXBook.SUV.prototype =

{
get DriveType: function()
{
return this. DriveType;
1
dispose: function()
{
alert("Disposing instance of class SUV");
}
}

AJAXBook.SUV.registerClass("AJAXBook.SUV", AJAXBook.Car);

The earlier code implemented an AJAXBook.Car class that had a constructor that
received three parameters to initialize the Make, Model, and Year members on the Car
object. This code now implements the SUV class. The SUV constructor takes the same
parameters as the Car constructor, plus an additional parameter (strDriveType) that spec-
ifies the type of 4WD the vehicle will use.

The first line of the SUV constructor passes the make, model, and year up to the base
class, so they can be initialized in the base class, thereby avoiding the need to duplicate
them in the initialization code in the AJAXBook. SUV class. The SUV constructor then imple-
ments and initializes the single distinct property of the SUV class: DriveType. The
prototype of the class contains two methods: the first allows you to define the DriveType
property, and the second, the Dispose method, just displays an alert that the memory of
the class instance is being reclaimed. The last statement in the code shows how to use the
registerClass method to register the SUV class in the AJAXBook namespace. The first
parameter in the registerClass method, AJAXBook. SUV, specifies the fully qualified name
of the new class. The second parameter in the registerClass method, AJAXBook. Car, speci-
fies the base class. In other words, AJAXBook. SUV inherits from AJAXBook.Car.

To see the AJAXBook. SUV class in action, return to the web page you created earlier,
and change the Button1 onclick script to match the following code:

function Buttoni onclick()

{
var testCar = new AJAXBook.Car('Honda','Pilot’,'2005");
alert(testCar.get MakeandModel());
alert(testCar.get Year());

var testSUV = new AJAXBook.SUV('Honda','Pilot','2005', 'Active’);
alert("SUV Make and Model: " + testSUV.get MakeandModel());
alert(testSUV.get Year());



CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

alert(testSUV.get DriveType());

return false;

We've added the creation of an instance of the class AJAXBook. SUV and invoked its
methods get _MakeandModel, get Year, and get DriveType. The instance of the class AJAX-
Book.SUV contains the method get DriveType, but the get MakeandModel and get Year
methods are implemented by the base class AJAXBook.Car and inherited by the derived
class AJAXBook. SUV. Run the application, and you'll see them in action (see Figure 3-11).

¢~ Untitled Page - Windows Internet Explorer |:||E|[Z|

- |5L http:/flocalhost/AJAXEnabledWebsSite [TestAJAXBookMNamespace. aspx V| (| % ! | 2 |-

S

3

Links @) CodePlex | CollabNet | Connect DNSDNSStuff 2| XMS @) GED @B MSON @) Planview @ Premier DScriptCenher

»

H akr |EUnﬁﬂedPage |__| & - B r?:-f‘ T 'ZF'

Windows Internet Explorer E]

] E SUV Make and Model: Honda Filot
L3

Done ‘i Local intranet *® 100% -

Figure 3-11. Calling a method from the base class on the derived class

Implementing Interfaces in JavaScript

The AJAX Library also adds support for interfaces to JavaScript. An interface is a con-
tract—by implementing an interface, you state that you will implement a specific set of
methods. Using interfaces allows you to implement a common set of methods across
multiple classes with less room for error (e.g., leaving a method out in one of the classes).

45



46

CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

As an example, consider the following case. There are two types of sports cars: a “real”
sports car that has a stick shift (manual transmission) and an “imitation” sports car that
has an automatic transmission.

Here is the code that defines the stick shift interface:

AJAXBook.IStickShift = function()

{
this.get GearCount = Function.abstractMethod;
this.set GearCount = Function.abstractMethod;
this.get CurrentGear = Function.abstractMethod;
this.set_CurrentGear = Function.abstractMethod;
}

AJAXBook.IStickShift.registerInterface('AJAXBook.IStickShift');

It defines four abstract methods that any class using this interface must support. The
abstractMethod property defines the method names and parameters but gives no method
implementation. They are “Set the current gear,” “Get the current gear,” “Set the number
of gears the transmission has,” and “Get the number of gears the transmission has.” A real
sports car is one that implements this interface and, by definition, these methods:

AJAXBook.SportsCar = function(strMake, strModel, strYear, strGears)

{
AJAXBook.SportsCar.initializeBase(this, [strMake, strModel, strYear]);

this. GearCount = strGears;
this. CurrentGear = 0;

}
AJAXBook.SportsCar.prototype =
{
get_GearCount: function()
{
return this. GearCount;
1
set GearCount: function(strGears)
{
this. GearCount = strGears;
b

get CurrentGear: function()

{

return this. CurrentCear;



CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

1
set CurrentGear: function(strCurrentGear)
{
this. CurrentGear = strCurrentGear;
1
dispose: function()
{
alert("Disposing instance of class SportsCar");
}

AJAXBook. SportsCar.registerClass("AJAXBook.SportsCar”,
AJAXBook.Car,
AJAXBook.IStickShift);

In this case, the registerClass method call passes the fully qualified name of the
class, the class it inherits from, and the interface it implements. You can implement more
than one interface with your class simply by specifying each interface into the register-
Class method and separating the interface’s name by a comma.

Conversely, an imitation sports car is just a fancy-looking normal car, so its class defi-
nition would look like this:

AJAXBook.ImitationSportsCar = function(strMake, strModel, strYear)

{
AJAXBook.ImitationSportsCar.initializeBase(this, [strMake, strModel, strYear]);

AJAXBook.ImitationSportsCar.prototype =
{

Dispose: function()

{

Alert("Disposing instance of class ImitationSportsCar");

}

AJAXBook.ImitationSportsCar.registerClass(
"AJAXBook.ImitationSportsCar",
AJAXBook.Car);

47



48 CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

Within your client-side JavaScript, you can check whether or not your class imple-
ments the IStickShift interface so that you can determine what kind of car it is and
whether or not it implements the interface’s methods prior to using them.

The following example uses the web page from earlier but changes the content of the
button’s onclick event handler to this:

function Buttoni onclick()
{
var testSportsCar = new AJAXBook.SportsCar('Porsche','999','2005",'6");
var testImitationSportsCar = new AJAXBook.ImitationSportsCar('Shorspe’,
123",
'2005");

ProcessCar(testSportsCar);
ProcessCar(testImitationSportsCar);

return false;

This event handler calls a helper function named ProcessCar, which looks like this:

function ProcessCar(theCar)

{
if(AJAXBook.IStickShift.isImplementedBy(theCar))

{
alert("Current Car: "
+ theCar.get MakeandModel()

+ " This is a good sports car

+ " -- I can change gears with a stick shift.");

theCar.set CurrentGear(5);
alert(theCar.get MakeandModel()

+ " is now cruising in gear number:

+ theCar.get CurrentGear());

else
alert("Current Car: "
+ theCar.get MakeandModel()
+ " This is an imitation sports car

n

+ " -- it's an automatic with a sleek body.");



CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

This method checks to see whether the car being passed is a “real” sports car. It does
this by checking whether it implements the IStickShift interface using the method AJAX-
Book.IStickShift.isImplementedBy(), which returns true only if the specified object is an
instance of a class that implements the IStickShift interface. After it is determined that
the car object implements the interface, then it is safe to call the methods set_Current-
Gear() and get_CurrentGear(). If an attempt was made to call the methods and they didn’t
exist, an exception would be thrown.

You can see the application in action in Figure 3-12.

Windows Internet Explorer

! Current Car: Porsche 999 This is a good sports car — I can change gears with a stick shift.
. )

Figure 3-12. Implementing the 1StickShift interface

Accessing Server Resources from JavaScript

A typical design pattern in web applications is consuming a web service and presenting
the data it returns to the user. This forms a typical n-tier architecture, with the web serv-
ice and the information it provides being a resource tier for your web application, which
is the presentation tier. To consume the web service, you would normally require the web
service to be invoked from the server because before the AJAX framework release, it was-
n't possible to call it from the client side. This degrades the responsiveness of a web
application because it first must issue a postback to the server and then wait for a
response while the server-side code invokes the web service.

With ASPNET AJAX, web applications can now invoke web services directly from the
client. The AJAX Library supports client-side web service proxies, which make calling a
web service as easy as calling a JavaScript function. To generate a client-side web service
proxy, you need to specify a <Services> tag within the <ScriptManager> tag that was dis-
cussed earlier. Within the <Services> tag, you need to add a <asp:ServiceReference> tag for
each web service you want to use.

Web services are ideally suited for business logic that needs to be used by a number
of applications. In the following example, a web service is what calculates the value of a
car based on its make, model, and how much it has depreciated in value. Depreciation is
not something that can normally be calculated on the client because it is based on a
complex formula that uses database lookups. For this example, the depreciation will sim-
ply be calculated as $2,000 in value for each year the car has aged.

49



50

CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

First you need to add a new web service item to your Visual Studio 2005 project and
name it CarService.asmx. Add a new WebMethod to the web service named getCarValue.
You'll need to add the following using statements at the top of the code file to provide
access to the ASPNET 2.0 AJAX Extensions’ attributes and keywords:

using System.Web.Script;
using System.Web.Script.Services;

Now here’s the code for your getCarValue method:

[WebMethod]

public int getCarValue(string strCarMake,
string strCarModel,

int strCarYear)

{
int nReturn = 0;
if (strCarMake == "Honda")
{
if (strCarModel == "Pilot")
{
nReturn = 40000;
}
else
{
nReturn = 30000;
}
}
else
{
nReturn = 20000;
}
int nDepreciation = (System.DateTime.Now.Year - strCarYear) * 2000;
nReturn -= nDepreciation;
return Math.Max(0, nReturn);
}

This crude calculation establishes the base value of a Honda at $30,000 (unless it is a
Pilot, in which case, it is $40,000). Other makes of car have a base value of $20,000.
Depreciation is then subtracted from the car’s base value at $2,000 per year of age.



CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

Finally, you need to add a [ScriptService] attribute to the web service declaration. By
adding this tag to the web service, you're telling the ASPNET 2.0 AJAX Extensions to cre-
ate a proxy object for the web service so that it is accessible via JavaScript.

[ScriptService]
public class CarService : System.Web.Services.WebService

The web service is complete and ready to be invoked from the client; now it’s time to
create the web page that is going to call it. Open Default.aspx in the designer, and add a
ScriptManager element to the page by dragging it from the Toolbox and dropping it onto
the page designer. Now add three ASPNET label controls, three HTML input (text) con-
trols, and an HTML input (button) control to the web page. Label the three text fields
“Make:”, “Model:”, and “Year:”, and name them txtMake, txtModel, and txtYear. Set the text

of the button to “Get Value”. The web page should look like Figure 3-13.

TestAJAXBookNamespace.aspx™ | - X

‘%criptl-lanager - ScriptManager1
Riake!
Riodel!

[ Source <body>||<input#button2=>

Figure 3-13. Designing the web service client application

51



52

CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

Note By using the HTML Input button, the page does not have to be posted back when the button is
clicked.

Next, go to the source view for this form, find the asp:ScriptManager tag, and add a
<Services> tag inside of it. Within the <Services> tag, add an <asp:ServiceReference> tag
with a Path attribute that points to the web service. This will cause the AJAX Library to
generate a web service proxy at runtime. The HTML should look like this:

<asp:ScriptManager ID="ScriptManager1" runat="server">
<Scripts>
<asp:ScriptReference Path="~/AJAXBook.js" />
</Scripts>
<Services>
<asp:ServiceReference Path="~/CarService.asmx" />
</Services>
</asp:ScriptManager>

Next, you need to implement the button’s onclick event handler, which will invoke
the web service, via its proxy, and pass it the parameters entered in the text fields. In
design view, double-click the button to create the event handler function. You will auto-
matically be returned to the source view and will be inside the Button1_onclick function.
Add the following code to this function:

requestValue = CarService.getCarValue(formi.txtMake.value,
formi.txtModel.value,
formi.txtYear.value,
OnComplete,
OnError);

return false;

In JavaScript, you refer to an HTML control by prefixing it with the name of the form
that it is on. In this case, the form is called form1; therefore, you can get the value of the
txtMake field using form1.txtMake.value.

To invoke a web service method via a proxy, you use the name of the web service, fol-
lowed by a period, followed by the name of the web method you want to call. You pass
parameters into the web method, and get the return value, just like for a normal function



CHAPTER 3 " THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

call. In this case, the web method is named getCarValue, and the service is called CarService,
so the method that needs to be called is CarService.getCarValue. If the web service is
defined within a namespace, then the name of the method would be prefixed by the
namespace (e.g., if the namespace is MyServicesForAjaxApps, then the method name
would be MyServicesForAjaxApps.CarService.getCarValue). If you are in doubt as to what
to use, then look at the value of the Class attribute in the web service’s .asmx file (see the
<%@ WebService %> attribute at the start of the .asmux file) and use that appended with the
name of the web method.

Now, the getCarValue web method only expects three parameters, but we've passed five
parameters into the web service proxy. Because the AJAX Library invokes web services
asynchronously, it needs to inform you when the call to the web service is complete.

The two additional parameters are the names of the methods to call if the web service
call completes successfully and the method to call if it fails. In this case, the function
onComplete will be called if the web service call completes successfully, and the function
onError will be called if there is a problem calling the web service.

In this example, you need to implement the callback functions like this:

function onComplete(result)

{
alert("The car is worth s$" + result);
}
function onError(error)
{
alert(error.get message());
}

If the call to the web service completes successfully, then the result is passed back to
the onComplete function, in this case, the calculated value of the car. If it fails, an error
object is passed to the onError function. The message associated with the error can be
obtained by calling the object’s get _message method.

Figure 3-14 shows the application calculating the value of a 2005 Honda Pilot at
$36,000, and the method onComplete displaying the results.

53



54

CHAPTER 3 © THE MICROSOFT AJAX LIBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER

( Untitled Page - Windows Internet Explorer

% y - |E htm:HIoGlhost,.fAJAXEnabIedWebSitefTestAJAXBooldﬂamespa:V| 4| % | | 2~

|

i Links € CodePlex @ | CollabMet @ | Connect UWSDNSSwff @) XMS @ | GED 2 mson & | Planview | @ Premier

che = . — HE . B - Y 58 v
e oA |,éUnhﬂedPage | | - Rl L B S @ G

Malke- | Honda |
Mode: |Pilot |
Year:|2005 |

Get Value

Done (@ \j Local infranet * 100% -

Figure 3-14. The result of a call to the getCarValue web service

Summary

In this chapter, you were introduced to the power that the Microsoft AJAX Library adds to
JavaScript. You learned about the extensions implemented in the file MicrosoftAjax.js that
add true object-oriented programming to JavaScript, with features such as inheritance,
namespaces, interfaces, and classes. By walking through an example, you were able to
see how these features work and how you can use them to make JavaScript easier to code,
debug, and maintain. Additionally, you looked at the JavaScript features that automati-
cally encapsulate asynchronous web service calls from your browser application. You saw
how to implement and consume a web service as well as how to process the asynchro-
nous results. Comparing the complexity of this call to the AJAX code in Chapter 1, you
can see it is accomplishing almost the exact same task with less code and in an easier-
to-read and easier-to-maintain manner.

From here, you can begin to see the value that ASPNET AJAX brings to developing
AJAX-style applications. The following chapter will provide details on the server-side
portion of ASPNET AJAX: the ASPNET 2.0 AJAX Extensions.



CHAPTER 4

ASP.NET AJAX Client Libraries

In the first three chapters, you looked at the basics of ASPNET AJAX and how you can
use it to build web applications that provide slick, clean, high-performing Uls by restrict-
ing the need for full-page postbacks to the server and that use the intelligence of the
browser on the client side. You also learned about the ASPNET AJAX JavaScript exten-
sions that bring about a great deal of object-oriented support to JavaScript, thereby
allowing you to create classes, events, interfaces, and even the ability to implement
inheritance in JavaScript. These additions bring JavaScript one step closer to the .NET
programming model with which you're already familiar. In this chapter, you'll learn a bit
more about the JavaScript extensions and the built-in types as well as explore the main
components of the ASPNET AJAX client library.

JavaScript Type Extensions

In the previous chapter, you saw the JavaScript extensions made available by the ASPNET
AJAX client library and how you can use them to build object-oriented script files for your
web application. In this section, we'll revisit the JavaScript extensions and discuss some
of the new types included in the base class libraries that to some extent resemble those
found in the .NET Framework. Keep in mind, however, that JavaScript by nature is not a
strongly typed language, and the classes discussed here are not natively supported types.
You still need to have a ScriptManager control on your page to use any of these JavaScript
type extensions.

Array and Boolean Extensions

Arrays are nothing new in JavaScript, but the added extensions in the ASPNET AJAX
libraries make them a whole lot more functional and similar to those available in the
.NET Framework. Of course, these are not going to be exactly identical in signature and
behavior to the Array object of the .NET Framework. Another important point to note is
that the methods of the Array extension are provided as helper methods for an existing
JavaScript Array object, and thus using them does not require instantiation in a similar

55



56

CHAPTER 4

ASP.NET AJAX CLIENT LIBRARIES

manner to static methods. Therefore, you can start using the methods without having to
instantiate the Array extension itself. Table 4-1 lists the methods of the Array extension.

Table 4-1. Methods of the Array Extension

Method Name Description

add Adds an element to the end of an array

addRange Copies all elements of one array to the end of another array

clear Deletes all elements of an array

clone Creates a shallow copy of an array

contains Boolean value indicating whether or not an element is in an array

dequeue Deletes the first element of an array

enqueue Another method for adding an element to the end of an array

forEach Iterates through the elements of an array

indexOf Returns the index of a specified element in an array (returns -1 if the
element wasn't found in the array)

insert Inserts a value at a specified location in an array

pars Creates an Array object from a string variable

remove Removes the first occurrence of an element in an array

removeAt Removes an element at a specified location in an array

To better understand these methods and how they can be used, consider the follow-

ing JavaScript snippet:

<script type="text/javascript" language=javascript>

function ArraySample() {

//Instantiate a JavaScript array object

var myArray = [];
myArray[0]

'First';

Array.add(myArray, 'Second');
var newArray = ['Third','Fourth','Fifth'];

//Add the newArray object to the myArray

Array.addRange(myArray,newArray);

//Remove the last item from the Array

Array.removeAt(myArray, 4);



CHAPTER 4 = ASP.NET AJAX CLIENT LIBRARIES 57

DisplayArray(myArray);
}
function DisplayArray(arr) {
var i;
var strArray="";
for (i in arr)

{
strArray+=(i+':'+arr[il]+', ');
}
alert (strArray);
}
</script>

In this example, a classic JavaScript Array object is created and given a value (First)
at the initial index. After that, the add and addRange methods of the Array extension are
used to add additional values to the array. Then the last value of the array is removed
using the removeAt method, and the underlying Array object is passed to the DisplayArray
function to be displayed as shown in Figure 4-1. Once again, notice how the array object
here, myArray, is passed in as a parameter to methods of the Array extension. It’s impor-
tant to realize that these additional methods listed in Table 4-1 are not new methods on
the native JavaScript Array object itself.

The page at http!/flocalhost59391 says: @

! I:First, LiSecond, 2/ Third, 3:Fourth,

Figure 4-1. JavaScript output of the Array extension sample

The Boolean extension provided in the ASPNET AJAX client library is the simplest one
with the least number of methods. It just provides one extra method, parse, which con-
verts a string into a Boolean value. The native JavaScript Boolean type does not natively
support string initialization. The following script simply declares a Boolean value set to
false and displays the Boolean value if false.

boolVar = Boolean.parse("false");
if (!boolVar)
alert ('False');



58

CHAPTER 4 © ASP.NET AJAX CLIENT LIBRARIES

Note InVisual Studio 2008, there is great Intellisense support for all types in xyz.

Date Extensions

Months, days, or years are fairly easy to get access to via the native JavaScript Date object,
but having globalization support for dates takes some work. The ASPNET AJAX client
library Date extension provides excellent support for globalization of dates by enabling

a wide range of date formatting options based on the browser locale. Unlike the Array
extension, the methods provided by the Date extension are instance methods, so you
have to create a Date object before using them. Table 4-2 lists the four methods of this
extension.

Table 4-2. Methods of the Date Extension

Method Name Description

format Formats a date by using the invariant (culture-independent) culture
localeFormat Creates a date from a locale-specific string using the current culture
parselnvariant Creates a date from a string using the invariant culture

parselocale Creates a date from a locale-specific string using the current culture

Note that there are two format methods here: format and localeFormat. The only dif-
ference is that the format method is culture invariant, meaning that regardless of the
current culture, it always uses the same formatting for the date. If you wanted to display
culture-sensitive dates (so that dates are displayed differently based on the country
and/or language), you first have to set the EnableScriptGlobalization property of the
ScriptManager control to true. This ensures that the current culture is serialized and sent
to the browser for the ASPNET AJAX client library to correctly process the desired date
format based on the specified culture settings. Table 4-3 lists the various formatting
options supported by the format methods of the Date extension.

Table 4-3. List of the Supported Date Formats

Format Description
d Short date pattern (e.g., 05/10/07)
D Long date pattern (e.g., Thursday, 10 May 2007)

t Short time pattern (e.g., 18:05)



CHAPTER 4 = ASP.NET AJAX CLIENT LIBRARIES

Format Description

T Long time pattern (e.g., 18:05:12)

F Full date pattern (e.g., Thursday, 10 May 2007 18:05:12)

M Month and day pattern (e.g., May 10)

s Sortable date and time pattern (e.g., 2007-05-10T18:05:12)
Y Year and month pattern (e.g., 2007 May)

For instance, to display the present date, you can just instantiate a new Date object, and
using the format method, pass in the intended format provider (as listed in Table 4-3).

function displayDate() {
var today = new Date();
alert (today.format('D"));

The formatted date as the result of the preceding script is shown in Figure 4-2.

Wiindows Internet Explorer [E5w)

i Sunday, 03 June 2007
-

Figure 4-2. Displaying the current date in long format

Error Extensions

JavaScript has an Error object and is often used in conjunction with try/catch blocks.
However, this is a generic Error object used to encapsulate all types of errors and report
them to the user. The ASPNET AJAX client library Error extension provides support for
some degree of typed exceptions on the client. It contains some of the commonly typed
exceptions found in the .NET Framework. The Error extension allows developers to not
only handle exceptions based on the type of the error generated but also manually throw
errors of a certain type as needed.

The ASPNET AJAX client library takes care of all necessary work required to properly
serialize these typed errors into and from JSON. When using the Error extension to throw

59



60

CHAPTER 4 © ASP.NET AJAX CLIENT LIBRARIES

an exception, a new type of exception based on the underlying exception type in the Sys
namespace (discussed in a later section in this chapter) is generated. You can even gener-
ate custom errors and make specific references pertaining to the original source of the
error. Table 4-4 lists all ten of the supported static methods of the Error extension.

Table 4-4. Methods of the Exror Extension

Method Name Description

argument Creates an Error object based on the Sys.ArgumentException exception.

argumentNull Creates an Error object based on the Sys.ArgumentNullException
exception.

argumentOutOfRange Creates an Error object based on the Sys.ArgumentOutOfRangeException
exception.

argumentType Creates an Error object based on the Sys.ArgumentTypeException
exception.

argumentUndefined Creates an Error object based on the Sys.ArgumentUndefinedException
exception.

create Creates an Error object that can contain additional error information.

invalidOperation Creates an Error object based on the Sys.InvalidOperationException
exception.

notImplemented Creates an Error object based on the Sys.NotImplementedException
exception.

parameterCount Creates an Error object based on the Sys.ParameterCountException
exception.

popStackFrame Adds extra information to the fileName and 1ineNumber properties of an

Error instance regarding the source of the error. This is particularly
useful when creating custom errors.

Suppose you are writing some validation logic for a function and want to generate a
typed exception on the client for a missing parameter. You can use the Exrror.argumentNull
method to generate an exception of that type by passing the name of the missing param-
eter and a description as shown here:

Error.argumentNull("x", "The x parameter was not provided.");

Also, suppose you had implemented the classic try/catch block in your JavaScript,
and checking for a necessary condition turned out to be false. You can generate a custom
typed exception for proper handling later. The create method is all that is needed to cre-
ate a custom exception as shown in the following GenerateError function:

function GenerateError() {
try



CHAPTER 4 = ASP.NET AJAX CLIENT LIBRARIES

{
throw Error.create('A custom error was generated');
}
catch(e)
{
alert(e.message);
}

}

Running the function displays the error message to the user as shown in Figure 4-3.

Wind owes Internet Explorer 3]

I A custorn errorwas generated
-

Figure 4-3. Displaying a custom generated error

Consequently, if you needed to have additional properties in the custom exception,
you provide another object to the create method, which contains a list of key/value pairs
to the create method such as those illustrated in the following script:

var errParms = {source: 'GenerateError', ErrorID: '999'};
Error.create('A custom error was generated', errParms);

This additional information in the errParms object can then be used in the catch clause
for better error handling and logging.

Number Extension

The Number extension is similar to the Date extension in that it has a few static and
instance methods for extending the underlying JavaScript type and providing support for
parsing and output formatting. Just like dates, the formatting of numbers can vary based
on the specified culture. This is especially true when displaying currencies that are stored
as numbers. The Number extension has two methods for parsing and another two for for-
matting values as listed in Table 4-5.

61



62

CHAPTER 4 © ASP.NET AJAX CLIENT LIBRARIES

Table 4-5. Methods of the Number Extension

Method Name Description

format Formats a number by the invariant culture
localeFormat Formats a number by the current culture
parselnvariant Parses a number value from a string
parselocale Parses a number from a locale-specific string

The two formatting methods of the Number extension support four format providers
that can be used depending on a type of number (e.g., percentage, currency, etc.). These
format providers are listed in Table 4-6.

Table 4-6. List of the Supported Number Formats

Format Description

p The number is converted to a string that represents a percent (e.g., -
1,234.56 %).

d The number is converted to a string of decimal digits (0-9), prefixed by

a minus sign if the number is negative (e.g., -1234.56).

c The number is converted to a string that represents a currency amount
(e.g., $1,234.56).

n The number is converted to a string of the form "-d,ddd,ddd.ddd..."
(e.g., -1,234.56).

So as you can see the c format provider can be used to automatically format a num-
ber into currency and even localize as specified by the CultureInfo class on the server.
The following script uses the parseInvariant method to parse out a number from a string
value, and then using the localeFormat, the number is displayed as a currency value.

function DisplayCurrency() {
var num = Number.parseInvariant("130.52");
alert (num.localeFormat("c"));

And, because the current culture had been implicitly set to United States, the cur-
rency format is $ with cents displayed after the decimal place as shown in Figure 4-4.



CHAPTER 4 = ASP.NET AJAX CLIENT LIBRARIES

Windows Internet Explorer [sEde|

I 13052

Figure 4-4. Displaying a currency value in US $

Once again, just as with the Date extension, if you plan to use any culture-specific
functionality, be sure to set the EnableScriptGlobalization property of the ScriptManager
control to true.

Object Extension

The Object extension in the ASPNET AJAX client library provides some level of reflection
functionality to JavaScript types. This is a far cry from the rich feature set of reflection in
the .NET Framework, but it is a potentially useful functionality in JavaScript. The Object
extension contains methods to describe the type and the type name of an object. This
extension contains only two static-like methods, getType and getTypeName, as shown in
Table 4-7.

Table 4-7. Methods of the Object Extension

Method Name Description
getType Returns the type of a specified object
getTypeName Returns the type name of an object

Type discovery can be particularly useful when you need to control the logic flow
based on the type of a parameter or other variables. Consider the following script block:

<script language=javascript type="text/javascript">
var num = new Number(4);
var date = new Date('05/31/2007');
function DisplayTypeInfo(obj) {

document.writeln("Value: " + obj + " | Type: "+

n n

Object.getType(obj)+ | Type Name: " +
Object.getTypeName(obj));

document.writeln("<BR>");

63



64

CHAPTER 4 © ASP.NET AJAX CLIENT LIBRARIES

}

DisplayTypeInfo(num);

DisplayTypeInfo(date);
</script>

In this script, two variables of type Number and Date are instantiated and assigned ini-
tial values. After that, the DisplayTypeInfo function is called to display the type
information for these two variables. The getType method is called here for the type of the
variable followed by the getTypeName to get the name of the variable type. As you can see
in Figure 4-5, the type contains more information than the type name.

‘£ hittp//localhost59391/Chapterd Code/ObjectExtension.asps - Windovs Intemet Explorer == ] =

l\../ll\_/l |Q, httpedflocalhosti59391 Chapterd_Codef/Object = | +f| X || Live Search 2 =
»

LE gRE | @ httpyflocalhost59391 Chapterd_Code.., oo B ~ = - #ﬂ [z Page » {05 Tools

Value: 4 | Type: function Number() { [native code] } | Type Name: Number
Value: Thu May 31 00:00:00 CDT 2007 | Type: function Date() { [native code] } | Type Name: Date

Dane €D Internet | Protected Made: OFf H100% -

Figure 4-5. Displaying type and type names of two variables

String Extension

Last but not least, the JavaScript’s native String object has been extended in the xyz to
include a handful of useful additions to once again make it somewhat more similar to the
String class in the .NET Framework. These additions can be very useful because string
processing in one form or another is done quite often in most applications. Other than
two formatting methods (similar to those found in the Date and Number extensions), the
String extension includes a few trimming methods among others as shown in Table 4-8.

Table 4-8. Methods of the String Extension

Method Name Description

endsWith Returns a boolean value indicating whether or not the end of the
String object matches the specified string

format Formats a string by replacing placeholders with provided values



CHAPTER 4 = ASP.NET AJAX CLIENT LIBRARIES

Method Name Description

localeFormat Formats a string by replacing placeholders with provided values with
locale specificity

startsWith Returns a boolean value indicating whether or not the start of the
String object matches the specified string

trim Removes leading and trailing spaces from a String object

trimEnd Removes trailing spaces from a String object

trimStart Removes leading white spaces from a String object

The following small script illustrates usage of some of the main methods of the

String extension:

<script language=javascript type="text/javascript">

var asp = " ASP";
var dotnet =".NET ";
var ajax = " Ajax

alert (String.format("{o}{1} {2} String Extension!",
asp.trimStart(),dotnet.trimEnd(),ajax.trim()));

</script>

In this script, all three available trimming methods were used to trim the extra space
from the start, end, and overall part of the designated string. These string variables were
then passed into the format method as arguments to be displayed (as shown in Figure 4-6)
just like it would be with the .NET Framework’s String class. One last point to note here is
that the two formatting methods of the String extension are static methods, unlike the rest
of the methods, which are instance based.

Wind owes Imternet Explorer

I ASP.MET &jax String Extension!

EXH

Figure 4-6. Using methods of the String extension

65



66

CHAPTER 4 © ASP.NET AJAX CLIENT LIBRARIES

Note The ASPNET AJAX client library also includes a StringBuilder class in the Sys namespace that
is quite similar in terms of functionality to the StringBuilder class in the .NET Framework and is a great
candidate to be used for extensive string manipulation on the client.

The Sys Namespace

The Sys namespace is the root namespace for xyz and basically is the running engine
behind ASPNET AJAX. The members of this namespace are classes responsible for the
core AJAX functionality you have seen so far in the book. These classes do all the under
the hood heavy lifting, handling issues such as data serialization, application life cycle,
and asynchronous operation, to just name a few. Extensive coverage of all the classes and
features of this namespace is well beyond the scope of this chapter, but you will learn
about some of the key pieces of this important namespace.

Table 4-9 lists the main namespaces of the ASPNET AJAX Client Library.

Table 4-9. Namespaces of the ASPNET AJAX Client Library

Namespace Description

Sys Root namespace; also contains some base classes such as
Sys.CultureInfo

Sys.Net Provides networking and communication support such as facilities to
access web services

Sys.UI Contains a set of classes for comprehensive UI support, such as events
and control properties

Sys.Services Provides support for ASPNET application services, such as
Login/Authentication

Sys.Serialization Provides support for data serialization/JSON

Sys.WebForms Contains classes for asynchronous page loading, among others

The root Sys namespace includes classes and interfaces used throughout the
ASPNET AJAX Client Library by all other namespaces. One such interface is IDisposable,
which much like its cousin interface in the .NET Framework, provides a consistent inter-
face for proper deletion of objects in the ASPNET AJAX Client Library. The root Sys
namespace also includes the all-important Sys.Application class, which plays a major
role in the page life cycle of an ASPNET AJAX page. You can see the list of classes included
in the root Sys namespace in Table 4-10.



CHAPTER 4 = ASP.NET AJAX CLIENT LIBRARIES

Table 4-10. Classes of the Sys Root Namespace

Class Name Description

Application Provides objects and methods that expose client events and manage
client components and their life cycles

ApplicationLoadEventArgs Container object for arguments of the Application Load event
CancelEventArgs Base class for events that can be canceled

Component Base class for all ASPNET AJAX objects, including the Control class and
the Behavior class

CultureInfo Culture information object that can be used to provide locale-specific
functionality (can be used for globalization)

Debug Provides debugging and tracing functionality for client-side JavaScript
code

EventArgs Base class used for storing event arguments

EventHandlerlist A collection of client events for a component containing event names

and handlers as key/value pairs
PropertyChangedEventArgs Contains event arguments associated with changed properties

StringBuilder Provides facilities for better and more efficient string concatenation

As mentioned earlier, the classes of the Sys namespaces make up the underlying
engine of ASPNET AJAX. If you inspect the individual JavaScript files that are dynamically
generated and loaded on the browser by the ScriptManager, you'll see references to the Sys
namespace. With that said, let’s start by talking about the page life cycle and the
Sys.Application class.

Sys.Application

The Sys.Application class is an integral part of an ASPNET AJAX page. After the initial
load of resources, including script files and other rendered components, from the server
onto the client, the Sys.Application class then manages the page life cycle. In fact, if you
view the source of any ASPNET AJAX page, you would find the following script near the
bottom of the page:

<script type="text/javascript">

<l--
Sys.Application.initialize();

/1 -=>

</script>

67



68

CHAPTER 4 © ASP.NET AJAX CLIENT LIBRARIES

The call to the initialize() method, as the name suggests, initializes an instance of
the Application class by raising the load event, which then resides on the browser for the
remainder of the application life cycle. Therefore, the role and function of the Application
class is analogous to the role of the Page class in a typical ASPNET page. For ASPNET
AJAX pages, the Sys.Application class picks up where the Page class left off on the server
side. However, among other things, one big difference is that the client-side events of a
page as included in the Sys.Application class are a lot fewer than those offered in the
server-side Page class. In fact, there are only three events: init, load, and unload. Inter-
nally, the Sys.Application classes map events of JavaScript’s window object to these three
events. Table 4-11 lists these three events of the Sys.Application class.

Table 4-11. Events of the Sys.Application Class

Event Name Description

init Raised after scripts have been loaded and immediately before objects
are created

load Raised after scripts have been loaded and objects in the page have been
created and initialized

unload Raised right before all objects in the page are disposed of

Much like server-side ASPNET, where Page Load is the default event handler for the
server-side Load event, the Sys.Application class also provides default event handlers for
the client-side load and unload events. Consider the following script block:

function pageload()

{
alert ('Loading Page...');
//load components
}
function pageUnload()
{
alert ('Page unloading...');
}

pageload is automatically executed as soon as the load event is triggered; the
pageUnload method is executed when the unload event is triggered. Once again, you do not
have to write any custom event handlers for these two methods. These two methods are
automatically wired up to their corresponding events by the Sys.Application class.

Keep in mind that there can be many more than the aforementioned three events on
a page because components in a page can expose their own sets of events. We'll discuss
event handling in a later section in this chapter.



CHAPTER 4 = ASP.NET AJAX CLIENT LIBRARIES

Other than events, the Sys.Application class also contains a number of methods for

managing components in a page. For instance, you can use the getComponents method to
get a list of all registered components on a page. You can also use the findComponent
method to check the existence of a component in the page. This method takes in two
parameters, the name of the component and the ID of the parent component (if any).

In the following script, we check for the existence of a control called CustomComponent in a
parent control with the ID of Panel1.

<script language=javascript type="text/javascript">
if ((Sys.Application.findComponent('CustomComponent', Panell)))
alert ('CustomComponent was found on the page!');

</script>

Note You can use $find as a shortcut to Sys.Application.findComponent. This is one of many
global shortcuts in the ASP.NET AJAX Client Library.

Table 4-12 contains a list of methods in the Application.Sys class.

Table 4-12. Methods of the Sys.Application Class

Method Name Description

addComponent Creates and initializes a component with the Application object

dispose Releases all dependencies held by the objects in the page

findComponent Finds and returns the specified component object

getComponents Returns an array of all components that have been registered in the
page using the addComponent method

initialize Initializes the Application object

notifyScriptloaded Boolean value indicating whether all the scripts have been loaded

queueScriptReference Used to queue script files that will be loaded in a sequential order

raiseload Raises the load event

registerDisposableObject

removeComponent

unregisterDisposableObject

Registers an object/component with the application and manages
the object requiring disposal

Removes an object from the application or disposes the object if it
is disposable

Removes/unregisters a disposable object from the application

69



70

CHAPTER 4 © ASP.NET AJAX CLIENT LIBRARIES

Sys.Component and Client Component Model

The Sys.Component class is another pivotal component of the ASPNET AJAX Client Library:.
This is also the base class that is ultimately extended by all graphical or nongraphical
client controls (Sys.UI.Control actually inherits from Sys.Component). Again, there is a
good level of similarity in the model between this class and the

System.ComponentModel. Component class of the .NET Framework, a recurring theme with
many of the classes in the Sys namespace you have probably noticed by now.

Sys.Component uses three key interfaces and four properties. The interfaces include
Sys.IDisposable, Sys.INotifyDisposing, and Sys.INotifyPropertyChange. Sys.IDisposable
is just like its .NET Framework counterpart. An interface for implementing proper logic
for disposing an object and the other two interfaces provide facilities for implementing
events used to detect disposing and changes in property of the underlying control.

The four properties are events, id, isInitialized, and isUpdating. The events property
returns an EventHandlerlList object, which contains references to all event handlers that
have subscribed to the events of the current component. And while the id property
returns the ID field of the current object, isInitialized and isUpdated return boolean
types depending on the self descriptive condition. Just like most properties of the classes
in the ASPNET AJAX Client Library, the properties of the Sys.Component class as well can
be accessed with built-in get and set accessors as shown in the following script snippet:

if (myComponent.get isInitialized())
alert ('My component is initialized');

You can just as easily set a value to a property using the set accessor as done in the
following script:

myComponent.set_id('UniqueComponentID");

Lastly, Table 4-13 lists the methods of the Sys.Component class.

Table 4-13. Methods of the Sys .Component Class

Method Name Description

beginUpdate A boolean value called by the create method to indicate that the
process of setting properties of a component instance has begun

create Creates and initializes a component

dispose Removes the component from the application

endUpdate Called by the create method to indicate that the process of setting
properties of a component instance has finished

initialize Initializes the component

raisePropertyChanged Raises the propertyChanged event of the current Component object for
a specified property

updated Called by the endUpdate method of the current Component object




CHAPTER 4 = ASP.NET AJAX CLIENT LIBRARIES

Sys.UI

The Sys.UI namespace provides much of the needed infrastructure for developing client
visual controls. This includes numerous properties, events, and classes that can be
extended. Sys.UT inherits some of its functionality from the Sys.Component namespace.
Some of the members of this namespace are critical for anyone implementing custom
client controls (Sys.UI.Control) or behaviors (Sys.UI.Behavior) but used less often for
everyday AJAX development. Lastly, there are also classes for better control over DOM
elements and events in the browser. Table 4-14 lists the classes of the Sys.UI namespace.

Table 4-14. Classes of the Sys .Ul Namespace

Class Name Description
Behavior Base class for all ASPNET AJAX client behaviors
Bounds Object containing a number of properties for a specific position such

as position, width, and height

Control Base class for all ASPNET AJAX client controls
DomElement Main class for handling client-side controls in the browser DOM
DomEvent Main class for handling client-side events in the browser, which

includes the ability to dynamically attach and detach events from
corresponding event handlers

Point Object containing integer coordinates of a position

Sys.UI also includes three enumerations accounting for some key events of DOM
elements. These enumerations are also used as properties in the Sys.UI.DomEvent class.
These enumerations are listed in Table 4-15.

Table 4-15. Enumerations of the Sys .Ul Namespace

Enumeration Description

Key Key codes. Values include nonalphanumeric keys (e.g., up, right, down,
backspace, home, space, end, etc.).

MouseButton Mouse button locations (leftButton, middleButton, rightButton).

VisibilityMode Layout of a DOM element in the page when the element’s visible
property is set to false. Allowed values are hide and collapse.

7



72

CHAPTER 4 © ASP.NET AJAX CLIENT LIBRARIES

Sys.UI.DomElement

The Sys.UI.DomElement and the Sys.UI.DomEvent, which we’ll look at later, are both classes
designed to provide better, more consistent, and browser-agnostic access and handling
of DOM elements in the browser. With one programming interface, you can reliably work
with all major browsers (IE, Firefox, Opera, Safari). Before looking at an example, take a
look at the methods of the Sys.UI.DomElement class as shown in Table 4-16.

Table 4-16. Methods of the Sys .UI.DomElement Class

Method Name Description

addCssClass Adds a CSS class to a DOM element

containsCssClass Returns a value indicating whether or not the DOM element contains
the specified CSS class

getBounds Returns the Bounds object for a specified DOM element

getElementById Returns a DOM element by ID (the $get shortcut is mapped to this
method)

getlocation Returns the absolute position of a DOM element

removeCssClass Removes a CSS class from a DOM element

setlocation Sets the position of a DOM element

toggleCssClass Toggles a CSS class in a DOM element

To better illustrate a few of the methods of the Sys.UI.DomElement class, consider the

following markup:

<body>

<form id="formi" runat="server">

<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>
<div id="MovePanel">

<b>Move me to:</b> <br />

X Coordinate

<input type="text" id="txtX" /> <br />
Y Coordinate
<input type="text" id="txtY" /><br />

<input id="Button1" type="button" value="Move'

onclick="repositionPanel ()" />

</div>
</form>
</body>



CHAPTER 4 = ASP.NET AJAX CLIENT LIBRARIES

Here, we have two text boxes and a button all in a <div> tag. The text boxes hold the
new X and Y position for the entire panel to which it will be moved. When the user clicks
the button, a function called repositionPanel is executed, and the panel is relocated using

absolute positioning and set to the new coordinates. Figure 4-7 depicts the page when
initially loaded.

é Chapter 4- Using the DomElerment - ¥Windows Internet Explarer EI@
s |Q, http:fflocalhost: 59391/ Chapterd Code/DomElementaspx = | *f| X ||| Live Search R -
File  Edit MWiew Favorites Tools Help
N »»
4 A | & Chapter 4- Using the DomElement o E ~ o= w ] 2k Page v {0 Tools v
Move me to:
X Coordinate
Y Coordinate |
Mave
Done @ Internet | Protected Mode: Off B 100 -

Figure 4-7. Using DomElement sample page

Let’s now examine the script behind repositionPanel that is responsible for moving
the panel to a new location on the page:

function repositionPanel()

{
var panel = $get('MovePanel');
var newX = Number.parseInvariant($get('txtX').value);
var newY = Number.parseInvariant($get('txtY').value);
Sys.UI.DomElement.setLocation(panel, newX,newY);

//Now use getlocation to retrieve the new coordinates
var newPos = Sys.UI.DomElement.getlLocation(panel);
alert(String.format("Moved to: {0}, {1}", newPos.x, newPos.y));

73



74

CHAPTER 4 © ASP.NET AJAX CLIENT LIBRARIES

Notice how the $get shortcut is used to retrieve the control reference by a specified
ID. This is definitely a lot shorter than having to write document.getElementById(..) as
commonly done in raw JavaScript. After the X and Y coordinates are parsed out of the text
boxes using the parseInvariant static method of the Number object, they are passed onto
the setlLocation method of the Sys.UI.DomElement for the panel to be moved to the new
coordinates. setLocation takes in three parameters: the control name, the new X coordi-
nate, and the newY coordinate. After the relocation, the getLocation method is used to
fetch the new coordinates from the panel object itself (as represented by the MovePanel
<div> tag). Lastly, the format method of the String extension is used to display the new
coordinates to the user as shown in Figure 4-8.

& Chapter 4- Using the DomElerment - Windows Internet Explorer [& =@ ][]
p 9 P = el jlas
o |41, http:/flocalhost59391/Chapterd Code/DomElementaspx v | 4 | X | | Live Search 2 -
f 8 " 3
LT T T |ﬁ Chapter 4- Using the DomElernent | | ";'?‘ B v = eﬁj |zf Page » {Ck Toals =
Move me to:
X Coordinate 350
Y Coordinate 100
| Move | Mfindows Internet Explorer @

! Mowed to: 350, 100

QK

Dare &P Internet | Protected Mode: Off 0% -

Figure 4-8. The panel is relocated to the new coordinates with a message box showing the
new positional values.

Nothing is done here that could not be done by raw JavaScript alone. But using the
ASPNET AJAX Client Library is not only a lot cleaner with much less code, but it also
provides a level of abstraction that guarantees expected behavior in all of the popular
browsers (IE, Firefox, Opera, Safari).



CHAPTER 4 = ASP.NET AJAX CLIENT LIBRARIES

Sys.UI.DomEvent

Sophisticated event handling has long been a major weakness of web applications in
general when compared to the rich and stateful desktop applications. The ASPNET AJAX
Client Library takes a major step in closing the gap (to some extent) from a functional
standpoint between the event modeling in .NET Framework and client-side ASPNET.
Sys.UI.DomEvent provides a browser-agnostic model packed with useful properties and
events that can be easily used with DOM elements. This comes in particularly handy con-
sidering the fact that browsers at times differ in their API and handling of DOM events.
Table 4-17 lists the methods of the Sys.UI.DomEvent class.

Table 4-17. Methods of the Sys .UI.DomEvent Class

Method Name Description

addHandler Adds a DOM event handler to the DOM element; also aliased by the
$addHandler shortcut

addHandlers Adds a list of DOM event handlers to the DOM element; also aliased by

the $addHandlers shortcut.

clearHandlers Removes all DOM event handlers from the DOM element that were
added through the addHandler or the addHandlers methods; also aliased
by the $clearHandlers shortcut

preventDefault Prevents the default DOM event from executing

removeHandler Removes a DOM event handler from the DOM element that exposes
the event; also aliased by the $removeHandler shortcut

stopPropagation Stops the propagation of an event to its parent elements

In the previous script sample, you saw how to move a panel around the screen with
client-side only code using the methods of the Sys.UI.DomElement class. In that example,
the function name was set to the onclick attribute of the button as is often done in classic
JavaScript. We could just as easily use the addHandler method to wire up the click event of
the button to the desired function.

The addHandler method has three required parameters: the target element, the name
of the event, and the event handler. So in the case of the previous sample, we would have

Sys.UI.DomElement.addHandler(Button1, "click", repositionPanel);
or by using the $addHandler shortcut, we would have

$addHandler (Button1, "click", repositionPanel);

75



76

CHAPTER 4 © ASP.NET AJAX CLIENT LIBRARIES

In such a case, another thing that would have to be different is the function signature
of the click handler. It must now have support for the event object and the following sig-

nature:

function eventHandler (e) {..}

With that, we get all the added benefits of being able to extract potentially useful data
out of the event object. Speaking of useful data, take a look at the fields of the
Sys.UI.DomEvent class in Table 4-18.

Table 4-18. Fields of the Sys .UI.DomEvent Class

Parameter Name

Description

altKey

button

charCode

clientX

clienty

ctrlKey

offsetX

offsetY

screenX

screenY

shiftKey

target
type

A boolean value indicating whether or not the event associated with the
Alt key occurred

Returns a Sys.UI.MouseButton enumeration value indicating the actual
button of the mouse that was clicked

Returns the character code of the key that initiated the event

Returns the x-coordinate (in pixels) of the mouse pointer when the
event was triggered

Returns the y-coordinate (in pixels) of the mouse pointer when the
event was triggered

A boolean value indicating whether or not the event associated with
the Ctrl key occurred

Returns the x-coordinate (in pixels)of the mouse relative to the object
that triggered the event

Returns the y-coordinate (in pixels)of the mouse relative to the object
that triggered the event

Returns the x-coordinate (in pixels)of the mouse relative to the center
of the screen

Returns the y-coordinate (in pixels)of the mouse relative to the center
of the screen

A boolean value indicating whether or not the event associated with
the Shift key occurred

Returns the target object used by the triggered event

Returns the name of the triggered event




CHAPTER 4 = ASP.NET AJAX CLIENT LIBRARIES

The $addHandlers shortcut (Sys.UI.DomEvent.addHandlers) can be used to wire up
more than one event handler to a particular event; in which case, you can have multiple
event handlers that will be executed when the target event has been triggered.

To dynamically remove an event handler from an event on a control, use the
Sys.UI.DomEvent.removeHandler (or $removeHandler) with the identical signature as the
addHandler method (the target control, the event name, and the event handler). To
remove the repositionPanel method as the event handler of Button1, you would have the
following script:

$removeHandler (Button1, "click", repositionPanel);

Also, if you wanted to clear all the associated event handlers with an event on a
control, you could do so with the self-explanatory Sys.UI.DomEvent.clearHandler (or the
$clearHandler shortcut).

Global Shortcuts

All these shortcuts have been either mentioned or explained by this point in the chapter.
However, given their utility and importance, they’re worth another look in one location.
You will come across these not only in your development needs but also in countless
places in ASPNET AJAX controls and libraries. Table 4-19 lists all the global shortcuts in
the ASPNET AJAX Client Library.

Table 4-19. Global Shortcuts in the ASPNET AJAX Client Library

Shortcut Description

$addHandler Shortcut to the Sys.UI.DomEvent.addHandler method
$addHandlers Shortcut to the Sys.UI.DomEvent.addHandlers method
$clearHandlers Shortcut to the Sys.UI.DomEvent.clearHandlers method
$create Shortcut to the Sys.Component.create method

$find Shortcut to the Sys.Application.findComponent method
$get Shortcut to the Sys.UI.DomElement.getElementById method

$removeHandler Shortcut to the System.UI.DomEvent.removeHandler method

77



78

CHAPTER 4 © ASP.NET AJAX CLIENT LIBRARIES

Other Commonly Used Classes in the Sys
Namespace

The following sections describe other often-used classes in the Sys namespace in greater
detail.

Sys.Browser

One of the challenges of web development for more than a decade has been targeting
and accounting for browser-specific behaviors. Typically, JavaScript is used to query the
various user agent parameters (obtained from the HTTP headers) to identify the browser
type and version. The Sys.Browser class makes the task of browser detection and targeting
a lot simpler than the traditional approach with JavaScript. Consider the following line of
script:

if (Sys.Browser.agent === Sys.Browser.Firefox)
// Write browser-specific logic for Firefox

As you can see, it’s extremely easy to identify the browser type here with much less
code than it would take in raw JavaScript. There are four predefined browser types to
account for the four most popular browsers on the market:

* Sys.Browser.InternetExplorer
* Sys.Browser.Firefox

* Sys.Browser.Opera

* Sys.Browser.Safari

Identifying the browser version can just as easily be done with the version property
of the Sys.Browser class. Keep in mind that all methods of the Sys.Browser class are static
like and do not require instantiation.

Sys.StringBuilder

String concatenation is a relatively common task in JavaScript especially when you need
to dynamically inject HTML into a page via JavaScript. In such cases, plain old string con-
catenation can fast lead to very messy code. The Sys.StringBuilder class is somewhat
similar to its .NET Framework counterpart (System.Text.StringBuilder) in that they both
share similar method signatures for many of the methods. This class can also take in the
initial string as its constructor. All methods are instance based and thus require an



CHAPTER 4 = ASP.NET AJAX CLIENT LIBRARIES

instance object to be executed. Table 4-20 lists the methods of the Sys.StringBuilder
class.

Table 4-20. Methods of the Sys . StringBuilder Class

Method Name Description

append Appends a string to the end of the StringBuilder object

appendLine Appends a new string with a line feed at the end of the StringBuilder
instance

clear Clears the contents of the StringBuilder object

isEmpty Boolean value indicating whether or not the StringBuilder object has
any content

toString Returns a string from the contents of a StringBuilder instance

To see the Sys.StringBuilder class in action, take a look at the following function:

function stringBuilderSample()
{
var sb = new Sys.StringBuilder("<html>");
sb.appendLine('<head></head>");
sb.appendLine('<body>");
sb.appendLine('<div align=center>");
sb.appendLine('Chapter 4 - ASP.NET Ajax Client Libraries');
sb.append('</div>");
sb.append('</body></html>");
document.write(sb.toString());

In the preceding script snippet, a block of HTML is concatenated together to be sent
to the browser. Here you see that an instance of the Sys.StringBuilder class is created
with the initial string “<html>”, and additional lines are added using the appendLine
method. At the end, the entire content of the StringBuilder is thrown to the browser by
using the toString method of the StringBuilder instance. You can see the result of the
preceding script in Figure 4-9. This is a pattern you most certainly have already seen all
too often with the System.Text.StringBuilder class in the .NET Framework.

79



80

CHAPTER 4 © ASP.NET AJAX CLIENT LIBRARIES

&= http:fflocalhost:59391/Chapterd_CodefStringExtension.aspx - Windows ... El@

@KJ - | & httpitilocathostss: ~ |45 | X || Live Search o
Eile  Edit Miew Faworites Tools Help

ol
L0 dRE | & httpyflocalhost59301f,. o~ B~ = vl

Chapter 4 - ASP NET Ajax Client Libraries

@' Internet | Protected bMode: Off 100

Figure 4-9. Generating HTML dynamically via JavaScript using the Sys.StringBuilder class

Summary

In this chapter, you learned about the JavaScript type extensions designed to enhance the
native types and associated utilities in JavaScript. You also learned about some of the
important classes in the Sys namespace of the ASPNET AJAX Client Library and some of
the rich functionality they bring to the table in an effort to bring some similarity to the
.NET Framework in the world of client-side web development with JavaScript.

There is certainly a lot more to the ASPNET AJAX Client Library that was not covered
in this chapter, including a few entire namespaces (Sys.Webforms, Sys.NET, and
Sys.Services). For a complete reference of the ASPNET AJAX Client Library, feel free to
view the online documentation at http://ajax.asp.net/docs. In the next chapter, we'll
look into the rich and powerful server controls in ASPNET AJAX and how easily they can
be used to add quite capable AJAX functionality to your web applications.


http://ajax.asp.net/docs

CHAPTER 5

Introducing Server Controls in
ASP.NET AJAX

The first three chapters of this book gave you an overview of ASPNET AJAX and how you
can use it to build web applications to restrict unnecessary full page postbacks and pro-
cessing on your web pages, thus improving the performance and polish of your web
applications. Chapters 3 and 4 introduced you to the client-side controls presented by
ASPNET AJAX and stepped you through many examples of how to use these controls in
JavaScript and in a new XML-based script called ASPNET AJAX Library.

You looked at some advanced aspects of the scripting framework, including actions,
which are compound commands associated with an event or stimulus on a control;
behaviors, which are automatic units of functionality that can be associated with a con-
trol, enabling things such as drag and drop; and data binding, which allows for controls
to be wired up to each other or to themselves to pass data between them.

In this chapter, you will go to the other side of the action—the server—and begin
exploring the various server-side controls available to you when building your AJAX
applications. You have seen one of these controls, the ScriptManager control, already. In
this chapter, you will look at ScriptManager in more detail among other ASPNET AJAX
server controls. In Chapter 6 you will learn more about how these controls work by
navigating through an application that actually uses these controls.

Using ASP.NET AJAX Server Controls in Visual
Studio 2005

Visual Studio 2005 and ASPNET offer some great design tools that allow you to visually
construct pages, which fits in neatly with the concepts that ASPNET AJAX introduces.
Developers can place controls on a page, and these controls generate the JavaScript that
is necessary to implement the AJAX functionality. In the following sections, you'll look at
how to use these controls within the integrated development environment (IDE).



82

CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

In Chapter 3, you learned how to create a new AJAX-enabled ASPNET site. Alterna-
tively, you can just as easily create an AJAX-enabled ASPNET web application if you have
installed the Web Application Project add-on or Visual Studio 2005 SP1. Either way, upon
creating the new project, you will notice the new added section to the Toolbox titled AJAX
Extensions as shown in Figure 5-1.

Toolbox - 0
+ Standard

Data

Validation

Navigation

Login

WebParts

HTHML

=l AJAX Extensions

k Pointer

Timer
_j ScriptManager

L I = |

|

*'g=} ScriptManagerProxy
%ﬁ UpdateProgress

o] UpdatePanel

+ AJAX Control Toolkit

Figure 5-1. Your Toolbox tab containing AJAX server controls

Now that you have the controls in your Toolbox, you can drag and drop them onto
your web forms. The rest of this chapter discusses these controls and their object models,
and in the next chapter, you'll start using these controls in hands-on examples. At the
time of this writing, five server controls are included in the first release version of
ASPNET AJAX: Timer, ScriptManager, ScriptManagerProxy, UpdateProgress, and UpdatePanel.
Currently, additional controls are packaged in the Futures CTP builds of ASPNET AJAX,
which should surface in future releases of ASPNET AJAX.

Using ASPNET AJAX server controls is the easiest and quickest path to implementing
AJAX functionality in your ASPNET application. They are also ideal for when a minimal
amount of change in desired for existing ASPNET applications that make extensive use of
ASPNET server controls.

Note If you plan on using Visual Studio 2005 AJAX-enabled web applications (following the web applica-
tion model and not the ASP.NET web site model), be sure to install ASP.NET AJAX after installing Visual Studio
2005 SP1.




CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

Introducing the ScriptManager Control

The ScriptManager control is pivotal at the very heart of ASPNET AJAX. This control, as its
name suggests, manages the deployment of the various JavaScript libraries that implement
the client-side runtime functionality of ASPNET AJAX. This control is also heavily used by
other sever controls to provide partial page rendering and script file management.

Using the ScriptManager

You've already used the ScriptManager control to create references on the client side with
the ASPNET AJAX Library. To add ScriptManager to your page, simply drag and drop it
onto an ASPNET page as shown in Figure 5-2.

Default.aspx.cs [Design] - Defaultaspx™ | web.config

E’Scripl:l‘-ianager - ScriptManager 1

Figure 5-2. The ScriptManger control

Now, if you take a look at the code behind this page, you'll see that placing the
ScriptManager control has caused the following script to be added to your page:

<asp:ScriptManager ID="ScriptManager1" runat="server" />

When you run the page and select View ~TRA Source in the browser, you'll see that
the preceding one-line script generated the following scripts among other code in the
page output:

<script src="/Ajax/WebResource.axd?d=HOhspevoRtnoVp5Ca4MubA28amp;
t=633008366579531250" type="text/javascript">

</script>

<script src="/Ajax/ScriptResource.axd?d=rbfRw_fjV44N4zFu5uugvXCgOfpE5bOdbRFvvkMhZEOL
-ghFYTQ71i9aLWWp9h02901tgv-pDZFxuTtMikT21d-q81lo-xXLBcAYv3xqohiRM1&amp;t=
633051881703906250" type="text/javascript">

</script>

<script src="/Ajax3/ScriptResource.axd?d=rbfRw_fjV44N4zFu5uugvXCgofpE5bOdbRFvVkMhZEQ
1-ghFYTQ7i9al WWp9h02901tgv-pDZFxuTtMikT21d3I1hQBwnI44PsST1y
SkVAgc18amp;t=633051881703906250" type="text/javascript">

</script>

83



84

CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

<script type="text/javascript">

//<\[CDATA[

Sys.WebForms.PageRequestManager. initialize('ScriptManager1',
document.getElementById('form1'));

Sys.WebForms.PageRequestManager.getInstance(). updateControls([], [1, [1, 90);

/711>

</script>

Note Because the client scripts are generated automatically, your results may vary somewhat from the
preceding script block.

ScriptResource.axd and WebResource.axd are, in fact, ASPNET HTTP handlers that
emit client-side JavaScript for AJAX functionality in the page. The encoded data after the
querystring holds metadata information about the pertinent resources. The last script
block contains client-side scripts for any components on the page. If you look inside the
Web.config file of your ASPNET AJAX-enabled project, you'll notice the following block,
which registers the aforementioned HTTP handlers for use in your project:

<httpHandlers>

<add verb="*" path="* AppService.axd" validate="false"
type="System.Web.Script.Services.ScriptHandlerFactory,
System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35"/>

<add verb="GET,HEAD" path="ScriptResource.axd"
type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions,
Version=1.0.61025.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"

validate="false"/>
</httpHandlers>

Programming with the ScriptManager

As a core component of ASPNET AJAX, the ScriptManager control has much functionality,
including the capability to communicate with ASPNET authentication services, to access
web services, to render culture-specific information, to perform sophisticated script
management, to do partial page rendering, and more. It inherits from the Control class
(in the System.Web.UI namespace), and in addition to the members of that class, also has
some of the following methods as shown in Table 5-1.



CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

Table 5-1. ScriptManager Control Methods

Method Name

Function

GetCurrent

RegisterAsyncPostBackControl

RegisterDataltem

RegisterDispose

RegisterExtenderControl

RegisterPostBackControl

RegisterScriptControl

SetFocus

(Static) Gets the ScriptManager instance for a Page object.
Registers a control for asynchronous postbacks.
Sends custom data to a control during partial-page rendering.

Registers a script that can be used to properly dispose a control
inside an UpdatePanel control. This script is executed when the
UpdatePanel gets disposed.

Registers an extender control with the existing ScriptManager
instance.

Registers a control for postback. This method can be used for
existing controls inside an UpdatePanel that you require to do full
postbacks.

Registers a script control with the existing ScriptManager
instance.

Sets the browser focus to a specified control.

Table 5-2 lists the properties of the ScriptManager control excluding the properties
inherited from the Control and Object classes.

Table 5-2. ScriptManager Control Properties

Property Name

Function

AllowCustomErrorsRedirect

AsyncPostBackErrorMessage

AsyncPostBackSourceElementID

AsyncPostBackTimeout

AuthenticationService

EnablePageMethods

EnablePartialRendering

EnableScriptGlobalization

Boolean value indicating whether or not to use the custom errors
section of Web.config to handle errors in asynchronous postbacks

The error message that is sent to the client when an unhandled
server exception occurs during an asynchronous postback

The unique ID of the control that caused the asynchronous
postback

Indicates the period of time, in seconds, before asynchronous
postbacks time out if no response is received

Returns the AuthenticationServiceManager object that is
associated with the current ScriptManager instance

Boolean value indicating whether static page methods on an
ASPNET page can be called from client script

Boolean value that enables partial rendering of a page

Boolean value indicating whether the ScriptManager control
renders script in the browser to support parsing and formatting
culture-specific information

Continued

85



86

CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

Table 5-2. Continued

Property Name Function

EnableScriptlocalization Boolean value indicating whether the ScriptManager control loads
localized versions of script files

IsDebuggingEnabled Boolean value indicating whether the debug versions of client
script libraries will be rendered

IsInAsyncPostBack Boolean value indicating whether the current postback is being
executed in partial-rendering mode

LoadScriptsBeforeUlI Boolean value indicating whether scripts are loaded before or
after markup for the page Ul is loaded

ScriptMode Determines whether to render debug or release versions of client
script libraries

ScriptPath The path to the location that is used to build the paths to ASPNET

AJAX Extensions as well as other script files

Scripts Returns a ScriptReferenceCollection object that contains
ScriptReference objects that are registered with the
ScriptManager control declaratively or programmatically

Services Returns a ServiceReferenceCollection object that contains a
ServiceReference object for each web service that ASPNET AJAX
Extensions expose on the client

SupportsPartialRendering Boolean value indicating whether the client supports partial-page
rendering

Performing Partial Rendering

The EnablePartialRendering property of this control sets how your page will behave con-
cerning updates. If this is false (the default), full-page refreshes occur on round-trips to
the server. If this is true, then postbacks and full-page refreshes are suppressed and
replaced with targeted and partial updates. Instead of the application performing a full
postback, the application simulates full postbacks using the XMLHttpRequest object when
this is set to true (as you would expect from an AJAX application).

On the server side, the page is processed in the normal way, responding to any con-
trols that call _doPostBack(). Existing server-side postback events continue to fire, and
event handlers continue to work as they always have. It is intended, by design, that
AJAX-enabled applications change existing ASPNET applications as little as possible.

The power of the ScriptManager control, when partial rendering is enabled, comes at
render time. It determines, with the aid of the UpdatePanel control, which portions of the
page have changed. The UpdatePanel, which you will see more of later in this chapter,
defines regions in the page that get updated as a chunk. If, for example, you have a page



CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

containing a number of chat rooms and you want to update only a single chat room, you
would surround that area of the page with an UpdatePanel control.

The ScriptManager control overrides the rendering of the page and instead sends
HTML down to the XMLHttpRequest object for each of the UpdatePanel controls (which we
will discuss later) on the page.

Specifying Additional Script Components Using the ScriptReference Tag

The ScriptManager control has a <Scripts> child tag that can specify additional scripts to
download to the browser. This can contain one or more <asp:ScriptReference> tags that
specify the path to the script. Upon registering a script file through this object, you will be
able to call its methods on your page. The ScriptReference object has the capability to use
scripts that are either stored as embedded resources in an assembly or as files on the web
server.

To register an embedded script, you must first set the Name property of the
ScriptReference tag to the name of the actual file that contains the script and then
set the Assembly property to the name of the assembly containing the script. You can
see an example of this in the following script snippet:

<asp:ScriptManager ID="ScriptManager1" runat="server">
<Scripts>
<asp:ScriptReference Assembly="MyAssembly" Name="MyAssembly.MyScript.js" />
</Scripts>
</asp:ScriptManager>

More simply, to use a file-based script that resides on the web server, you can set the
Path property of the ScriptReference tag to the location of the file as shown here:

<asp:ScriptManager ID="ScriptManager1" runat="server">
<Scripts>
<asp:ScriptReference Path="MyScript.js" />
</Scripts>
</asp:ScriptManager>

When you run the page containing the preceding script and view the source of the
browser output, you'll notice that a new script code block has been added:

<script src="MyScript.js" type="text/javascript"></script>

Before leaving the ScriptReference object, let’s take a look at its properties as shown
in Table 5-3.

87



88

CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

Table 5-3. ScriptReference Tag Properties

Property Name Function

Assembly Actual name of the assembly that contains the client script file as an
embedded resource

IgnoreScriptPath Indicates whether the ScriptPath property is included in the URL when
you register a client script file from a resource

Name Name of the embedded resource that contains the client script file

NotifyScriptlLoaded Indicates whether the additional code should be added to the script file
to notify the ScriptLoaded method of the Sys.Application class

Path Specifies the path where the ScriptManager control can find the
stand-alone script file to download

ResourceUICultures Comma-delimited list of UT cultures that are supported by the Path
property

ScriptMode The mode of the target script (debug, release, etc.)

Specifying Services

In Chapter 2, you saw how a service can be directly consumed in a client application
through a script-based proxy. You can use the ScriptManager control to reference
this using the <Services> child tag. This tag should contain one or more
<asp:ServiceReference> tags that specify the service you want to reference.

This tag has two attributes:

« Path: This specifies the path to the service. You briefly saw in Chapter 2 that
JavaScript proxies to web services on ASPNET AJAX web sites can be automatically
generated by postfixing /js at the end of its URL. So, for example, the web service
at wstest.asmx would return a JavaScript <asp:ServiceReference> proxy that could
be used to call it at wstest.asmx/js. When using the tag to specify the service, most
of the work would be done automatically for you on the client side with the help
of the ScriptManager control. Here’s an example:

<Services>
<asp:ServiceReference Path="wstest.asmx"/>
</Services>



CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

e InlineScript: This is a boolean value (true or false) that specifies whether the proxy
generation script is included as an inline script block in the page itself or obtained
by a separate request. The default is false. When running the page that has this
property set to true and uses the <Services> tag of the ScriptManager control, you
get the following additional code on the client:

<script src="wstest.asmx/js" type="text/javascript"></script>

Error Handling in the ScriptManager Control

The ScriptManager control provides an error-handling mechanism whereby you can specify
an error message or implement more in-depth logic in the event of an error. This is particu-
larly useful for the client experience because you can then help your users gracefully
handle errors that occur within the contents of the ScriptManager.

The two easiest ways to implement error handling for the ScriptManager control are to
use either the AsyncPostBackError event or set the AsyncPostBackErrorMessage property of the
ScriptManager tag. Here's an example of using the AsyncPostBackErrorMessage property:

<asp:ScriptManager ID="ScriptManager1" runat="server" AsyncPostBackErrorMessage=
"An error has occured within the ScriptManger tag." />

For more sophisticated error handling, however, it’s imperative to handle the
AsyncPostBackError event. You can, for instance, capture the message of the exception
and dynamically set it to the AsyncPostBackErrorMessage property among other desired
logic to handle the error:

protected void ScriptManagerl AsyncPostBackError(object sender,
AsyncPostBackErrorEventArgs e)

ScriptManager1.AsyncPostBackErrorMessage = e.Exception.Message;
//Implement further error handling logic

This concludes the tour of the ScriptManager control. In the rest of this chapter, we’ll
look at the other server-side controls offered by the ASPNET AJAX framework. In the next
chapter, we'll revisit this control through several examples.

89



90

CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

Introducing the ScriptManagerProxy Control

The ScriptManagerProxy control is available as an additional script manager for a page.

It also allows for custom authentication services through its AuthenticationService prop-
erty and profile services through the ProfileServiceManager property. Because only one
ScriptManager control is allowed per ASPNET page, if you use master and content pages,
you cannot place additional ScriptManager controls on any of the content pages. The
ScriptManagerProxy control enables you to place scripts and/or services in your content
pages. Before delving deeper into this control, let’s also look at the properties for the
supported child tags of this control in Table 5-4.

Table 5-4. ScriptManagerProxy Child Tags

Property Name Function

AuthenticationService Returns the AuthenticationServiceManager object (for custom
authentication service) that is associated with the current
ScriptManagerProxy instance

ProfileService Returns the ProfileServiceManager object that is associated with
the current ScriptManagerProxy instance

Scripts Returns a ScriptReferenceCollection object that contains a
ScriptReference object for each script file that is registered with
the ScriptManagerProxy control

Services Returns a ServiceReferenceCollection object that contains a
ServiceReference object for each service that is registered with
the ScriptManagerProxy control

As mentioned earlier, the ScriptMangerProxy control is ideal for use in content pages
where a ScriptManager has already been defined in the corresponding master page. To
better illustrate this, consider the following master page, MasterPage.aspx:

<%@ Master Language="C#" AutoEventWireup="true" CodeBehind=

n oo

"MasterPage.master.cs" Inherits="MasterPage" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" >

<head runat="server">


http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

<title>Sample Master Page</title>
</head>
<body>
<form id="form1" runat="server">
<div>
<asp:ScriptManager ID="ScriptManager1" runat="server" />
This is the Master page <br />
It contains this ScriptManager control: <br />
<br />
<asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server">
<br />
</asp:ContentPlaceHolder>
</div>
</form>
</body>
</html>

And we also create a new content page based on this master page called
ContentPage.aspx with the following code:

<%@ Page Language="C#" MasterPageFile="~/MasterPage.Master" AutoEventWireup="true"
CodeBehind="ContentPage.aspx.cs" Inherits="ContentPage" Title="Sample Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID='w»

"ContentPlaceHolder1" runat="server">

</asp:Content>

If you run the ContentPage.aspx page and look at the output, as expected you will see
the same general output that is generated by the ScriptManager control from the master
page consisting of the three main script blocks (among others) pointing to the
WebResource.axd and ScriptResource.axd as shown here:

<script src="/Ajax/WebResource.axd?d=HQhspevoRtnoVp5CadMubA2&amp ;=
t=633008366579531250" type="text/javascript"></script>

<script src="/Ajax/ScriptResource.axd?d=rbfRw_fjV44N4zFu5uugvXCgofpE5bOdbRFvvkMhZEO1
-ghFYTQ719aLWWp9h02901tgv-pDZFxuTtMikT21d-q81lo-XxXLBcAYv3xqohiRM1
&amp;t=633051881703906250" type="text/javascript">

</script>

<script
src="/Ajax/ScriptResource.axd?d=rbfRw_fjV44N4zFuSuugvXCgofpE5bOdbRFVVKkMhZEOL s
-ghFYTQ71i9aLWWp9h02901tgv-pDZFxuTtMikT21d3Ih0BwnI44PsSI1vSkVAgC 1w
&amp;t=633051881703906250" type="text/javascript"></script>

91



92

CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

But suppose you need additional AJAX functionality in your content page. For exam-
ple, you might want to take advantage of one of many great controls available in the
ASPNET AJAX Control Toolkit (covered extensively in Chapters 7 and 8). These controls
require additional scripts that may not have been included in the master page. That is
precisely where the ScriptManagerProxy control comes in.

Without getting into discussions about the ASPNET AJAX Control Toolkit, we'll add
one of its controls, the DragPanelExtender, to the content page with the help of the
ScriptManagerProxy control. To do this, drag and drop a ScriptManagerProxy control,
followed by a Label control, and a DragPanelExtender (from the AJAX Control Toolkit)
onto the page. Set the text property of the Label control to some text such as “You can
drag and drop this label.” At this point, your page should look similar to Figure 5-3 with
the following code:

<%@ Page Language="C#" MasterPageFile="~/MasterPage.Master" AutoEventWireup="true" w»
CodeBehind="ContentPage.aspx.cs" Inherits="Ajax.ContentPage" =
Title="DragPanelExtender Demo" %>

<%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit" ws
TagPrefix="cc1" %>

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1" w»
Tunat="server">

<asp:ScriptManagerProxy ID="ScriptManagerProxyl" runat="server">
</asp:ScriptManagerProxy>

<ccl:DragPanelExtender ID="DragPanelExtender1" runat="server" EnableViewState=w
"False" TargetControlID="Label1">

</cc1:DragPanelExtender>

&nbsp;

<asp:lLabel ID="Label1" runat="server" Text="You can drag and drop this label.">
</asp:Label>

</asp:Content>



CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX 93

tcnteni-:lf'ége.aspx*': MasterP-age.Master | - X

[
Content - Contentl (Custom)

lq_:.criptManagerProxy - SariptManagerProxy 1
EbragPanel[xtender - DragPanelExtender 1
i3 ' !
ﬂ'ou can drag and drop this Iabel_g

Figure 5-3. Adding a ScriptManagerProxy control to a content page

The last step before running the page is to set the TargetControlID property of the
DragPanelExtender to the name of the Label control (i.e., Label1). When you run the page,
you can drag and drop the actual label throughout the page as shown in Figure 5-4.



94

CHAPTER 5 /' INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

‘€ Untitled Page - Windows Internet Explorer E]

[ = .i;— 1 iii, http: flocalhost/zjax /contentPage, aspx |q *+| | |Live Searc -

W |féUnﬁﬂed Page |_| B - B - @ - rage - GTook~
This is the Master page

It contains this ScripthManager control:

Drag and drop this text box!

Done % | ocal intranet * 100% -

Figure 5-4. Placing an UpdatePanel control on a web form

Now, if you view the browser output, you'll notice that six additional script blocks
have been added to page output:

<script src="/Ajax3/ScriptResource.axd?d=IV7jia2nXbc7sCg1SW{3RbWOWNeQtdO8PGy fXw5pw
BCt7QucIL90E4uI487xH1PYvLbUfoMzAXx0D17veKacOLUw2&amp;t=633083898300000000” =
type="text/javascript">

</script>

<script src="/Ajax3/ScriptResource.axd?d=IV7jia2nXbc7sCg1SWf3RbWQWNeQtdO8PGy fXw5pBC e
t6I1valgMskgWHpAx-XLCYADQCoaENHDXR fmnXYiB5Q2&amp;t=633083898300000000" =
type="text/javascript">

</script>

<script src="/Ajax3/ScriptResource.axd?d=IV7jia2nXbc7sCg1SW{3RbWOWNeQtdO8PGy fXw5pw
BCuGnLpMX4aibann483UFkP4UcDhmgCv77Gz2BPIzb0sGO28amp; t=633083898300000000" =

type="text/javascript">

</script>



CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

<script src="/Ajax3/ScriptResource.axd?d=IV7jia2nXbc7sCg1SWF3RbWOWNeQtdO8PGy fXw5pw
BCtjSYyc7zoec8BYAEgCq7Xfw801uMObSmI5pFsFPANdi5317U-TPIGeX-1iRo2uSjUM1&ampes
;£=633083898300000000" type="text/javascript">

</script>

<script src="/Ajax3/ScriptResource.axd?d=IV7jia2nXbc7sCg1SWF3RbWOWNeQtdO8PGy fXw5pw
BCsJ5ep-dAHOns9-VxfadeqV ZfemV1TAoDxNenJwjPNYSz3EWAPxxWj3tXQmN4a7DI1&ampes
;1=633083898300000000" type="text/javascript">

</script>

<script src="/Ajax3/ScriptResource.axd?d=IV7jia2nXbc7sCg1SWF3RbWOWNeQtdO8PGy fXw5p=
BCtKZKNEW1h6009nJAVWsOew AfDKm3BP43z3sXquwMBrtQT-xZwKhUvOddRO4AWY6Is418ampes
;1=633083898300000000" type="text/javascript">

</script>

These additional script blocks contain the extra scripting logic required for the func-
tionality by members of the AJAX Control Toolkit that were dynamically inserted into the
page by the ScriptManagerProxy control. Without ScriptManagerProxy, you couldn’'t have
the required scripts handled automatically for you because this was all in the content

page.

Introducing the UpdatePanel Control

In typical ASPNET 2.0 applications, if you do a postback on the web page, the entire page
will be rerendered. This causes a “blink” or a “flash” in the client or browser. On the
server, the postback is detected, which triggers the page life cycle. This ends up raising
the specific postback event handler code for the control that caused the postback, and
this calls upon the page’s event handler.

When you use UpdatePanel controls along with a ScriptManager control, you eliminate
the need for a full-page refresh. The UpdatePanel control is similar to a ContentPanel con-
trol in that it marks out a region on the web page that will automatically be updated
when the postback occurs (but without the aforementioned postback behavior on the
client). It instead communicates through the XMLHttpRequest channel—in true AJAX style.
The page on the server still handles the postback as expected and executes, raising event
handlers, and so on, but the final rendering of the page means that only the regions spec-
ified in the UpdatePanel control’s regions are created. Also, unlike the ScriptManager, you
can actually have multiple UpdatePanel controls on the same page and even have nested
UpdatePanel controls within one another.

Using the UpdatePanel Control

To use an UpdatePanel control, you simply drag and drop it onto the design surface of
your web form (see Figure 5-5).

95



96

CHAPTER 5 /' INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

1l
X

Toolbox ~ & X | UpdatePanelaspx| Default.aspx |
[+ Standard ||~
* Data E‘.Ipdal:ePanEl—LlpdatePanell
1+ Validation

# MNavigation

1+ Lodgin

+ WebParts

* HTHML

=l AJAX Extensions
b Pointer

ﬁ?) Timer

:} ScriptManager

o} ScriptManagerProxy
ﬁ |UpdateProgress
&1 UpdatePanel
+ AJAX Control Toolkit
i+ AJAX Futures CTP -
= General
_ I Pointer |
:?‘g_l,Server Explorer |j@-Tu:u:uIbu:ux !_ ‘ (s Design | = Source |

Figure 5-5. Placing an UpdatePanel control on a web form

However, as you know, the UpdatePanel control cannot function without a
ScriptManager control on the page. Additionally, the ScriptManager control must be
located before any UpdatePanel controls on your page. In other words, as you read your
source code from top to bottom, the ScriptManager reference should appear before the
UpdatePanel ones. Using the Tasks Assistant will ensure that it is placed correctly. If your
ScriptManager control is not present or is incorrectly placed, you'll get an error when you
try to open the page in a browser (see Figure 5-6).



CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

/€ The control with ID "UpdatePanel1’ requires a ScriptManager on the page. The ScriptManager must - Windows Internet E... g@

- ‘ﬁ, http:/flocalhost/zjaxchapters/updatepanel aspx M *4[| X | [Live Search P~

LG h

- = »
T:\f abe [@The caontrol with ID 'UpdatePanel1' requires a Script. .. l l @ B = E}’EEQE - i) Tools -

~

Server Error in '/AjaxChapter6' Application.

The control with ID 'UpdatePanell’ requires a ScriptManager on the page. The
ScriptManager must appear before any controls that need it.

Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error
and where it originated in the code.

Exception Details: System InvalidOperationException: The control with ID "UpdatePanell’ requires a ScriptManager on the page. The Scriptianager must appear
before any controlz that need it

Source Error:

An unhandled exception was generated during the execution of the current web request. Information
regarding the origin and location of the exception can be identified using the exception stack trace

below.

Stack Trace:

[InvalidoperationException: The control with ID 'UpdatePanell' requires a ScriptManager on the page. The ScriptManage
System.Web.UI. UpdatePanel.get_ScriptManager () +198
System.Web.UI.UpdatePanel.RegisterPanel{) +87
System.Web.UI. UpdatePanel.OnInit(EventArgs &) +17
System.web.UI.Control.InitRecursive(Control namingContainer) +321
System.wWeb.UI.Control.InitRecursive(Control namingContainer) +198
System.Web.UI.Control.InitRecursive(Control namingContainer) +198
System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint)

(v

<] I | 2

Done % Localintranet * 100% -

Figure 5-6. Error page when the UpdatePanel and ScriptManager controls aren’t properly
configured

The UpdatePanel control contains a designer surface where you can place HTML. This
markup is the only one updated upon a postback if the ScriptManager control is enabled
for partial updates. Consider Figure 5-7, where several text boxes and a button appear on
the screen. This application has two text boxes, two labels, and a button outside the
UpdatePanel control, and it has a label inside the UpdatePanel designer. The label on the
inside is called 1b1Result. The code behind the button reads as follows:

int x = Convert.ToInt16(txt1.Text);
int y = Convert.ToInt16(txt2.Text);
int z = x+y;

1blResult.Text = z.ToString();

97



98

CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

As you can see, the label for the result gets updated to the value of the sum of the val-
ues of the text in the text boxes. Because 1blResult is in the UpdatePanel control, and the
ScriptManager control is set to enable partial rendering, clicking the button updates only
the text within the UpdatePanel control. You will see and dissect more examples of this in
Chapter 6.

UpdatePanelaspx| Default.aspx - M

[ESc:ripl:Ma nager - ScriptManager 1
. = [3]
First Number
- [13]
Lecond Number

"The Answer to your question is]

q..lpda tePanel - UpdatePanel 1
T abel

[d Design | &l Source

Figure 5-7. Simple application that uses the UpdatePanel control

Programming with UpdatePanel

The markup for the UpdatePanel control in the previous example is as follows:

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>
<asp:Label ID="1blResult" runat="server" Text="Label"></asp:Label>
</ContentTemplate>
</asp:UpdatePanel>



CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

The <asp:UpdatePanel> tag supports two child tags: the <ContentTemplate> tag and the
<Triggers> tag. Before moving on to discuss these tags, note the properties of the
UpdatePanel control excluding those inherited from the Control class as listed in Table 5-5.

Table 5-5. UpdatePanel Control Properties

Property Name

Method

ChildrenAsTriggers

ContentTemplateContainer

Controls

IsInPartialRendering

RenderMode

RequiresUpdate

UpdateMode

Boolean value indicating whether postbacks from immediate child
controls of an UpdatePanel control update the panel’s content.

Returns a control object that you can then use later to add child
controls to.

Returns ControlCollection object that contains the child controls for
the UpdatePanel control.

Indicates whether the UpdatePanel control is being updated because
of an asynchronous postback.

Indicates whether an UpdatePanel control’s content is enclosed in an
HTML <div> or <span> element.

Indicates whether the content of the UpdatePanel control will be
updated.

Indicates when an UpdatePanel control’s content is updated. The
default is “always.”

Using the ContentTemplate Tag

The <ContentTemplate> tag defines the HTML or ASPNET that will get updated by the
UpdatePanel control. You can use the designer to generate this HTML. If, for example, you
drag and drop a Calendar control onto the UpdatePanel control’s content template area
(see Figure 5-8), it will be defined within the <ContentTemplate> tag area.

99



100

CHAPTER 5 /' INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

UpdatePanEI.asptx*]/'Default.aspx ] - X

I%cripntr-hmili;l er - SaiptManager 1
. - 13]
First Number
- 1]
Becond Number

[Add]
=
The Answer to your question is

|F'I.I|:lf.iatu=:PaneI - UpdatePanel 1

Eabel

= April 2007 -
Sun Mon Tue Wed Thu Fri Sat
25 26 27 28 19 30 31

1 2 3 4 5 6 7
§ 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 16 27 18
29 30 1 2 3 4 5

Figure 5-8. Adding controls to the UpdatePanel control’s content template

You can see the markup that is produced by adding the calendar as follows:

<asp:UpdatePanel ID="UpdatePanell" runat="server">

<ContentTemplate>
<asp:Label ID="1blResult" runat="server" Text="Label"></asp:Label>

<asp:Calendar ID="Calendar1" runat="server"></asp:Calendar>
</ContentTemplate>
</asp:UpdatePanel>



CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

Using Triggers

The other child tag for the UpdatePanel control is <Triggers>. This allows you to define
triggers for the update. As seen in the previous table, the UpdatePanel control has a prop-
erty calledUpdateMode. If you set this to Conditional (the default is Always), then updates to
the rendering of the markup will occur only when a trigger is hit. The Triggers tag con-
tains the collection of trigger definitions. In Visual Studio 2005, there is a designer-based
Trigger Collections Editor (accessed by clicking on the Triggers Collection property in the
property box for the UpdatePanel) that can be used to view and edit triggers within an
UpdatePanel as shown in Figure 5-9.

UpdatePanelTrigger Collection Editor @

Members: AsyncPostBack: bnadd. Click properties:
0 | PostBack
1 EAsyncPostBack: btnAdd.Clide

ControlID btnAdd
EventMame Click
| Controlp

The trigger's target control ID.

Add *'] [ Remove

[ OK H Cancel l

Figure 5-9. UpdatePanelTrigger Collections Editor in Visual Studio 200

There are two types of triggers supported within the <Triggers> tag:
AsyncPostBackTrigger and PostBackTrigger. You can actually use these triggers for
controls that are not within the UpdatePanel. The two tags differ only in the fact that
AsyncPostBackTrigger, as the name suggests, can handle asynchronous postback when
the trigger is raised. It also has an additional property called EventName, which allows you
to specify the event name of the target control responsible for initiating the update.

You define an AsyncPostBackTrigger trigger with an associated control (specified by
ControllID) and an event name (specified by the EventName). If the event is raised on that
control, then the trigger fires, and the UpdatePanel control is rendered. You specify a
PostBackTrigger with the <asp:PostBackTrigger> tag and an AsyncPostBackTrigger with the
<asp:AsyncPostBackTrigger> tag. Here’s a quick sample based on the last example we used:

101



102 CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

<asp:Button ID="btnAdd" runat="server" Text="Add" OnClick="btnAdd Click" />
<br />
<asp:UpdatePanel ID="UpdatePanell" runat="server" UpdateMode=Conditional >
<ContentTemplate>
<asp:Label ID="1blResult" runat="server" Text="Label"></asp:Label>
<asp:Calendar ID="Calendar1" runat="server"></asp:Calendar>
</ContentTemplate>
<Triggers>
<asp:AsyncPostBackTrigger ControlID="btnAdd" EventName="Click" />
</Triggers>
</asp:UpdatePanel>

Here the AsyncPostBackTrigger specifies that the source for the trigger is the button
called btnAdd, and the event on which to trigger is the Click event. Therefore, when the
button is clicked, the AsyncPostBackTrigger fires, and the partial update occurs. Notice
that the declaration of the btnAdd button was actually outside the UpdatePanel block.

Introducing the UpdateProgress Control

Another server control that ASPNET AJAX provides is the UpdateProgress control. This
indicates the progress of an asynchronous operation that is taking place. Typically, the
browser’s status bar serves as an indicator of activity. With the partial-rendering and
asynchronous postback model in AJAX applications, viewing the status bar of the
browser is no longer applicable, which is why the UpdateProgress control is ideal and
more user friendly for displaying activity indicators on a web page.

Using the UpdateProgress Control

You can have a single UpdateProgress control on your page for multiple UpdatePanels or
have multiple UpdateProgress controls with different Uls for the UpdatePanels if you want
to have different progress indicators for different sections of the page. By default, if you
don't set the AssociatedUpdatePanellD property of the UpdateProgress control, it will be
triggered by events in all UpdatePanels on the page (assuming there is more than one).
To use an UpdateProgress control, you drag and drop it onto your page to create an
<asp:UpdateProgress> tag on your page:

<asp:UpdateProgress ID="UpdateProgressi" runat="server" />

The actual markup to display when the call is taking place is then defined using the
<ProgressTemplate> tag.



CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

When your application executes calls to the server, the HTML defined in the <Pro-
gressTemplate> tag is then displayed. This is where you could have an animating GIF or
some other custom message to inform the user about the status of the execution.

Programming with the UpdateProgress Control

Before showing an example using the UpdateProgress control, view its properties in Table 5-6.

Table 5-6. Properties of the UpdateProgress Control

Property Name Function

AssociatedUpdatePanelID ID of the UpdatePanel control that the UpdateProgress control displays
the status for.

DisplayAfter The value in milliseconds before the UpdateProgress control is
displayed.
Dynamiclayout A value that determines whether the progress template is rendered

dynamically. If set to false, it will take up the required space at all times
even if the progress content is not displayed.

In many large web applications today, long running data operations are not uncom-
mon. In such cases, it’s helpful to use the UpdateProgress control to notify the user about
the running status of the application. For the sake of simplicity, let’s create a page that
simulates a long running process by pausing the running thread for a few seconds.

To build this page, drop new ScriptManager, UpdatePanel, and UpdateProgress controls
on a new WebForm page. After that, create a new Button control in the UpdatePanel. In the
source view of the .aspx page, create a new <ProgressTemplate> tag within the
UpdateProgress tag with the following markup:

<ProgressTemplate>
Calculating...
</ProgressTemplate>

Your page should now look similar to Figure 5-10.

103



104

CHAPTER 5 /' INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

UpdateProgress.a spx*] Default.aspx

E_L-criptr-'lanager - SariptManager 1 |
IEIJ|:-:IatePaneI - UpdatePanel1

H Calculate

IEIJ|:-:IatePr'.':;-gres.s. - UpdateProgress1
Calculating. ..

Figure 5-10. Using the UpdateProgress control

Now, we can simulate a long running process when the button is clicked by pausing
the existing thread for four seconds in the event handler of the button:

protected void Buttoni Click(object sender, EventArgs e)
{

System.Threading.Thread.Sleep(4000);
}

When you run the page and click the Calculate button, you'll see that the string,
“Calculating...” appears for four seconds and then disappears as shown in Figure 5-11.



CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

& Untitled Page - Windows Internet.... |~ | O/i4

OO b

-.,J’ by |EUnﬁﬂedPage | I ‘i’?? T

Calculate

Calculating. -

%J | ocal intranet + 100% -

Figure 5-11. UpdateProgress control demo

If you now view the browser output, you’ll notice a new <div> tag along with extra
JavaScript that has been emitted by the UpdateProgress control:

<div id="UpdateProgressi" style="display:none;">
Calculating...
<div>

The new scripts that have been injected into the page dynamically toggle the style
property of the div without you having to do any additional coding.

Introducing the Timer Control

Probably the simplest of the ASPNET AJAX server controls is the Timer control. Similar in
many ways to the Timer control that has existed for some time for Winforms, the Timer con-
trol provides a simple-to-use timer functionality that can be configured to perform
operations repeatedly based on the time elapsed. Therefore, you can run certain operations
at a regular interval in a synchronous or asynchronous manner without having to do a
manual page refresh. This can come in handy in many scenarios for web applications.

105



106

CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

Imagine, for instance, that your page contains critical and dynamic information such
as stock quotes or flight arrival information that needs to be updated on a regular basis.
You can use the Timer control on your page to trigger updates to an UpdatePanel control,
all without having to do any full-page refreshes.

Using the Timer Control

To use a Timer control, you of course need a ScriptManager control on the page. You can
add a Timer control to a page by dragging and dropping it onto the control surface. A
good use for timers is to update the contents of an UpdatePanel control when the timer
ticks.

To see the Timer control in action, you can add an UpdatePanel control to a blank page
along with a ScriptManager control. After you've done this, you can drag and drop a Timer
control onto the page. Also, place a Label control in the UpdatePanel. You can see what this
looks like in the designer in Figure 5-12.

Timer.aspx* | Default.aspx - X

E‘_-'-criptManager - ScriptManager 1
lEII'irrller - Timerl

lE!J|:t-«:latePaneI - UpdatePanell
Eabel

Figure 5-12. Using a Timer control in the designer



CHAPTER 5 " INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

Lastly, double-click the Timer control so that it will generate the event handler stub for
the OnTick event of the Timer control. The markup in your page now has the <asp:Timer>
tag already defined. Here’s an example of a timer that has been customized with a
4,000-millisecond interval (4 seconds), with the name Timer1, and the event handler
Timera Tick:

<asp:Timer ID="Timer1" runat="server" Interval="4000" OnTick="Timeri Tick">
</asp:Timer>

Now, within the Timer1 Tick method in the code-behind class, you can perform an
operation each time the timer fires, such as updating the time. An AsyncPostBackTrigger
trigger is used within an UpdatePanel to trigger an update on the Timer’s Tick event. You
can see this in the following markup:

<div>
<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>

</div>
<asp:Timer ID="Timer1" runat="server" Interval="4000" OnTick="Timer1 Tick">
</asp:Timer>
<asp:UpdatePanel ID="UpdatePanel1" runat="server"»
<Triggers>
<asp:AsyncPostBackTrigger ControlID="Timer1" EventName="Tick" />
</Triggers>
<ContentTemplate>
<asp:lLabel ID="Label1" runat="server" Text=
</ContentTemplate>

></asp:Label>

</asp:UpdatePanel>

If you run the page, you'll notice that the Label control updates every four seconds
with the new time without doing a full page refresh (see Figure 5-13).

107



108 CHAPTER 5 /' INTRODUCING SERVER CONTROLS IN ASP.NET AJAX

‘& Timer Control Example - Windows Internet Explorer E]@

@ - &l htu::;'ﬂncalhosn‘ajaxcivi ) XK

e — »
W |;.éﬁmerCnntrolExamp|e | | “'?? - B -

23:39:30.0625000

Done %J | ocalintranet Ho100% -

Figure 5-13. Timer control demo

Summary

This chapter introduced you to the server controls that are available to ASPNET AJAX
programmers. It walked you through using the ScriptManager control, which is at the
heart of ASPNET AJAX. This control takes care of managing the ASPNET AJAX runtime as
well as associated scripts. Additionally, you looked at the UpdatePanel control, which is at
the heart of how ASPNET AJAX enables AJAX functionality in existing ASPNET pages
using partial-page updates.

This chapter gave you a high-level overview of the main ASPNET AJAX server controls
and how they work. There is another group of ASPNET AJAX server controls called the
extender controls that ship in the ASPNET AJAX Control Toolkit. Although we didn’t
discuss these controls here, they will be covered thoroughly in Chapters 7 and 8. In the
next chapter, you will look at some applications and samples that use this functionality,
dissecting them to understand how you can program similar applications of your own
in ASPNET AJAX.



CHAPTER 6

Using Server Controls in ASP.NET
AJAX

This chapter follows on from Chapter 5, which introduced you to the ASPNET AJAX
server controls and showed you how to use them. In this chapter, you'll look at two small
ASPNET AJAX applications and dissect them to see how they work. In the process, you'll
glean alot of new information about how to use the ASPNET AJAX server controls to
build powerful AJAX-style applications and how to extend your existing applications with
asynchrony.

One of the applications that will be discussed happens to be also one of the first
small apps built to showcase some of the features of ASPNET AJAX. This application,
called Scott’s ToDo List, is a great example of a simple data-driven AJAX-enabled ASPNET
web application. But before that, let's combine the controls discussed in the previous
chapter to create a practical solution to a common scenario.

Using the UpdatePanel, UpdateProgress, and
Timer Controls

For this first example, consider the following scenario: You have a data-driven web page
that needs to continuously alert the user with fast changing data, for instance, a page that
displays the major financial indices in the U.S. capital markets: Dow Jones Industrial Aver-
age (DJIA), NASDAQ), and S&P500. One approach is to place a <META> tag in your page with
refresh values that then force the page to refresh itself in regular intervals based on the pro-
vided value. But if you wanted to make the page behave more like a desktop application
and update the data without page refresh, AJAX is definitely the recommended path.

By now, you have seen the basics of the ScriptManager, UpdatePanel, UpdateProgress,
and the Timer server controls in ASPNET AJAX and have a good understanding of their
functionality. So, with that in mind, let’s build a quick application that does exactly what
was talked about earlier: displays the three main indices of the American capital markets
and continues to update the page with (simulated) real-time data without any page
refresh.

109



110

CHAPTER 6 " USING SERVER CONTROLS IN ASP.NET AJAX

To accomplish this, create a new ASPNET AJAX-enabled web site. Because the
ScriptManager control has already been placed on the page, drop new UpdatePanel,
UpdateProgress, and Timer controls onto the page called MarketData.aspx as shown in
Figure 6-1.

MarketData.aspx

E_L-criptHa nager - ScriptManager 1
E‘Jp-dal:ePanel - UpdatePanel1

EIJp-dater-g ress - UpdateProgress 1

[Ell'imer - Timer 1

Figure 6-1. New page with ASRNET AJAX server controls

After that, you just need an HTML table and a few label controls for the user inter-
face. Let’s take a look at the actual markup for this page:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="MarketData.aspx.cs" =
Inherits="MarketData" %>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" s
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server"»
<title>Market Summary</title>
</head>
<body>
<form id="form1" runat="server">
<div>
<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>
</div>
<u>Market Summary:</u>
<br /><br />
<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<Triggers>
<asp:AsyncPostBackTrigger ControlID="Timer1" EventName="Tick" />


http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

CHAPTER 6 " USING SERVER CONTROLS IN ASP.NET AJAX

</Triggers>
<ContentTemplate>
<table border="1">
<tr>
<td><asp:Label ID="Label1" runat="server" Text="DJIA"></asp:Label>
</td>
<td align=right><asp:Label ID="1blDowJones" runat="server"
Text="12000"></asp:Label></td>
</tr>
<tr>
<td><asp:Label ID="Label2" runat="server" Text="NASDAQ"></asp:Label>
</td>
<td align=right><asp:Label ID="1blNasdaq" runat="server"
Text="2500"></asp:Label></td>
</tr>
<tr>
<td><asp:Label ID="Label3" runat="server" Text="S&P 500">
</asp:Label></td>
<td align=right><asp:Label ID="1blSnp" runat="server" Text="1400">
</asp:Label></td>
</tr>
</table>
</ContentTemplate>
</asp:UpdatePanel>
<asp:UpdateProgress ID="UpdateProgressi" runat="server">
<ProgressTemplate>Updating...</ProgressTemplate>
</asp:UpdateProgress>
<asp:Timer ID="Timer1" runat="server" Interval="2000" OnTick="Timer1 Tick" />

</form>
</body>
</html>

By now, you are probably familiar with most of this code. Basically, we are using an
<asp:AsyncPostBackTrigger> trigger in the main UpdatePanel control and associating it with
the Tick event of the Timer control. To better show the updates taking place, you use an
UpdateProgress control with the text “Updating...” in its <ProgressTemplate> tag. In the
Timer control, you set the interval to 2 seconds (2000 milliseconds) and point the OnTick
event to the Timer1 Tick event handler in the code behind, which will be responsible for
writing the logic to fetch and display the new values for the three indices.

Obviously, the point of this application is to showcase a good scenario for using
ASPNET AJAX server controls and not to build a practical market data reporting
application. As such, the initial values for the three indices have been hard-coded in the
tags themselves. The initial value for the DJIA is set to 12000, the NASDAQ is set to 2500,

111



112 CHAPTER 6  USING SERVER CONTROLS IN ASP.NET AJAX

and the S&P is set to 1400. There will also be some simple logic to update the display
values of those indices with some fictitious data as shown in the following code block in
the code-behind class:

protected void Timeri Tick(object sender, EventArgs e)

{
System.Threading.Thread.Sleep(1000);
1blDowJones.Text = ((int.Parse(lblDowJones.Text)) + 1).ToString();
1bINasdag.Text = ((float.Parse(lblNasdaq.Text)) + 0.5).ToString();
1b1Snp.Text = ((float.Parse(lblSnp.Text)) + 0.25).ToString();

}

First, you initiate a one-second delay by pausing the current thread, and then you
increment the values of each label control by holding the value for the market indices
and assigning them back to the corresponding labels. As you can see, the value for DJIA
is incremented by one point, the NASDAQ index is incremented by a half point, and the
S&P 500 index is incremented by a quarter point. This update effectively takes place every
three seconds because the Timer1 Tick event is called every two seconds followed by a
one-second delay in the method.

Figure 6-2 shows MarketData.aspx in the browser during an update.

€ Market Summary - Windows Internet Explorer g@@

)~ [Erwirocnosyaaxc] 4] X
vy e i;éMark.etSummary | | E;\ - B &
Market Summary:
DIIA | 12006
NASDAQ | 2503
S&P 500 |1401.5
Updating. ..
Da % Local intranet H 100%

Figure 6-2. MarketData.aspx updates the values for the indices every three seconds.



CHAPTER 6 " USING SERVER CONTROLS IN ASP.NET AJAX

As you can see, the index values in the page change every two seconds (with a one-
second pause between updates and one second after the update without any refresh at
all). If you were to refresh the page, you would notice all three values being reset to their
initial values that were set in the page designer. Now view the source in the browser, and
notice the generated client code

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" w»
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head><title>
Market Summary
</title></head>
<body>
<form name="form1" method="post" action="marketdata.aspx" id="form1">
<div>
<input type="hidden" name="__ EVENTTARGET" id="_EVENTTARGET" value="" />
<input type="hidden" name="__ EVENTARGUMENT" id="_EVENTARGUMENT" value="" />
<input type="hidden" name="__VIEWSTATE" id="_ VIEWSTATE"
value="/wEPDWULLTEONDcxODOxOTNkZBVyy3kZPCaHntKg6301/pIvM3zf" />
</div>
<script type="text/javascript">
<!--
var theForm = document.forms['formi'];
if (!theForm) {
theForm = document.formi;
}
function _ doPostBack(eventTarget, eventArgument) {
if (!theForm.onsubmit || (theForm.onsubmit() != false)) {
theForm._EVENTTARGET.value = eventTarget;
theForm._ EVENTARGUMENT.value = eventArgument;
theForm.submit();

}
/11 -=>
</script>

<script src="/AjaxChapter7/WebResource.axd?d=2k350XVI5C1fsATKa8k0pQ2&
amp;t=633008366579531250" type="text/javascript"></script>

<script src="/AjaxChapter7/ScriptResource.axd?d=zmjix_FO7KXpA6mO2uaB_g52a3TPiFz24p4h
x51TaC3HYCrv10k4ongK5kg1 IR8XFf7DTDIMUGM-Uucre6H3Yy1K 8vru25LXaz61sl poUi&amp;t=
633051881703906250" type="text/javascript"></script>

113


http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

114

CHAPTER 6  USING SERVER CONTROLS IN ASP.NET AJAX

<script src="/AjaxChapter7/ScriptResource.axd?d=zmjix_FO7KXpA6mO2uaB_
G52a3TPiFz24p4hx51TaC3HYCrv10k4ongK5kg1IR8XFf7DTDIMUGM-Uucre6H3Y1DyFBKNihsy-
0GXMoZEYtg18amp;t=633051881703906250" type="text/javascript"></script>
<script src="/AjaxChapter7/ScriptResource.axd?d=zmjix_FO7KXpA6mO2uaB_
g52a3TPiFz24p4hx51TaC3HYCrv10k4ongK5kg1IR8XFf7DTDIMUGM-Uucre6H3Y90mwbS8Igy KW
7MLdflso1&amp;t=633051881703906250" type="text/javascript"></script>
<div>
<script type="text/javascript">
//<\[CDATA[
Sys.WebForms.PageRequestManager. initialize('ScriptManager1i',
document.getElementById('form1'));
Sys.WebForms.PageRequestManager.getInstance(). updateControls(['tUpdatePanel1'],
['Timer1'], [1, 90);
/711>
</script>
</div>
<u>Market Summary:</u>
<br /><br />
<div id="UpdatePanel1">

<table border="1">
<tr>

<td><span id="Label1">DJIA</span></td>

<td align=right><span id="1blDowJones">12000</span></td>
</tr>
<tr>

<td><span id="Label2">NASDAQ</span></td>

<td align=right><span id="1blNasdaq">2500</span></td>
</tr>
<tr>

<td><span id="Label3">S&P 500</span></td>

<td align=right><span id="1blSnp">1400</span></td>

</tr>
</table>
</div>
<div id="UpdateProgressi" style="display:none;">
Updating...
</div>

<span id="Timer1" style="visibility:hidden;display:none;"></span>
<script type="text/javascript">
<l--
Sys.Application.initialize();



CHAPTER 6 " USING SERVER CONTROLS IN ASP.NET AJAX

Sys.Application.add init(function() {
$create(Sys.UI. UpdateProgress, {"associatedUpdatePanelld":null,"displayAfter"
1500, "dynamicLayout":true}, null, null, $get("UpdateProgressi"));

b;

Sys.Application.add init(function() {
$create(Sys.UI. Timer, {"enabled":true,"interval":2000,"uniqueID":"Timer1"},
null, null, $get("Timer1"));

b;

/11 -=>

</script>

</form>

</body>

</html>

The ASPNET AJAX server controls emit JavaScript functions that copy and build a
new innerHTML property of the <span> or <div> tags that contain the value getting updated.
They are also responsible for generating a request on XMLHttpRequest and a callback for
when the client request is complete. The callback then builds HTML code to put on the
innerHTML property of the named <span> or <div> tags.

This is basically how the UpdatePanel works under the hood. It uses
Sys.WebForms.PageRequestManager to set up an asynchronous callback. These scripts are all
automatically generated by the ScriptManager. Near the end of the source in the last lines
of script in the page, you can also see the parameters of the Timer control being passed
via JavaScript with the interval set to two seconds and the ID of the control being Timer1.
Delving deeper into the generated script details piece by piece would fast take us beyond
the scope of this chapter. If you are interested in having a more in-depth understanding
of the inner workings of these script blocks on the page, you can view them by using
either an HTTP sniffer, the JSView plug-in for FireFox (https://addons.mozilla.org/
en-US/firefox/addon/2076), or other third-party tools designed to capture the browser
output.

Using a Task List Manager

One of the first reference applications publicly available for ASPNET AJAX was Scott
Guthrie’s task list manager, ToDo List. This application is a simple yet powerful demon-
stration of the power of the ASPNET 2.0 Framework and how easy it is to extend it for
AJAX-style functionality using ASPNET AJAX.

This application is a simple task manager using SQL Server 2005 Express edition as
a container for its data. You can download and run it on your local machine with the
complete source available online. Feel free to customize this app in any way you want
by adding or modifying new items as long as you accommodate these changes in the

115


https://addons.mozilla.org/en-US/firefox/addon/2076
https://addons.mozilla.org/en-US/firefox/addon/2076
https://addons.mozilla.org/en-US/firefox/addon/2076
https://addons.mozilla.org/en-US/firefox/addon/2076

116 CHAPTER 6 ©* USING SERVER CONTROLS IN ASP.NET AJAX

provided database. The entire application really consists of a single .aspx page and a
.master page. Figure 6-3 shows the main screen for this application.

["Note You can download Scott’s ToDo List application in addition to video tutorials about this and other
ASP.NET AJAX topics on http://ajax.asp.net.

@ - |E| http:/localhost/todolist/default.aspx |§|E| |L""’E SEHR HE'
Tz [gmﬁmm ]—] & b v [bPage v {(FTools +

Taskld MName Complete

Build ToDo List Demao
Build C# version of ToDo List

Maore Work

Mame

Complete

Insert Cancel

| %JLocalintranet | B100% -

Figure 6-3. The task list manager application


http://ajax.asp.net

CHAPTER 6 " USING SERVER CONTROLS IN ASP.NET AJAX 117

The main screen for this application shows a sortable list of tasks that you can add
to, edit, or mark complete. The drop-down button on the top switches the view between
Active and Completed status of the tasks. If you have already installed this application,
you can open the folder as an existing site in Visual Studio 2005. Let’s start by taking a
look at the MasterPage.master page in the designer as shown in Figure 6-4.

MasterPage.master| Default.aspx

|xuq|nnlgg - -

o (49 C:\ToDolist)
. App_Code
(3 App_Data
- 3 images
- [Z] Default.aspx
i 9 pefault.aspx.cs

ContentPlaceHolder - ContentPlaceHolderl

nE s

&

@ StyleSheet.css
Web.config

@Saluhoﬂ Explorer @Elass View

Properties > 1 x

MasterPage.master Web File Proper =
2= Iz

File Name MasterPage master
Ful pat C:\ToDoList|MasterP.
Full Path C:\ToDolist\MasterPat
[ vesyr | sowe | [0S0
Qutput
: Buid
Validstion Complete
Build: 1 succeeded or up-to-date, 0 failed, O skipped
File Name
Mame of this file.

[ Error List | (=] Output |
Ready

Figure 6-4. The task list manager master page in Visual Studio 2005

This page basically consists of a ContentPlaceHolder control in addition to the style
sheet. The main part of the application, as mentioned earlier, resides in the Default.aspx
page. Figure 6-5 shows this page in the designer.



118 CHAPTER 6 " USING SERVER CONTROLS IN ASP.NET AJAX

- Stylesheet.css | MasterPage.masber/VDefault.aspﬂ -

Scott’s ToDo List

rogress - pdateProgress1
L4

WETH T Complete

Databound Databound
Databound Databound
Databound Databound -
Databound Databound
Databound Databound

Edit Databound Databound

Edit Natahnund Databound

Figure 6-5. Editing the task list in the ASPNET designer

Once again, you see ScriptManager, UpdatePanel, and UpdateProgress controls as a
recurring theme. Let’s start by looking at the markup for the UpdateProgress control in
this page:

<asp:UpdateProgress ID="UpdateProgressi" runat="server">
<ProgressTemplate>
<div class="progress">
<img src="images/indicator.gif" />
Updating .....
</div>
</ProgressTemplate>
</asp:UpdateProgress>



CHAPTER 6 " USING SERVER CONTROLS IN ASP.NET AJAX 119

You won'’t find anything out of the ordinary here. Just a simple <asp:UpdateProgress>
tag with an animating GIF image and the text “Updating...” to notify the user about the
status in case there is a delay with data access during an operation such as update or
insert.

This page also contains two UpdatePanel controls. The first one is for the list of tasks,
whereas the second one allows the user to insert a new task. The top UpdatePanel control
contains an ASPNET CridView control. Because it’s in an UpdatePanel control, and partial
rendering is enabled, postbacks caused by actions on this panel should incur only partial
refreshes, which improves the user experience. Let’s take a look at the markup for this
UpdatePanel control containing the Gridview and other controls:

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>
<asp:GridView ID="GridViewl" runat="server" AllowPaging="True"
AllowSorting="True"
AutoGenerateColumns="False"
DataKeyNames="TaskId"
DataSourceID="0ObjectDataSource1"
CssClass="gridview"
AlternatingRowStyle-CssClass="even"
GridLines="None">
<Columns>
<asp:CommandField ShowEditButton="True" />
<asp:BoundField DataField="TaskId" HeaderText="TaskId" InsertVisible=
"False" ReadOnly="True" SortExpression="TaskId" />
<asp:BoundField DataField="Name" HeaderText="Name" SortExpression=
"Name" />
<asp:CheckBoxField DataField="Complete" HeaderText="Complete"
SortExpression="Complete" />
</Columns>
</asp:GridView>
</ContentTemplate>
<Triggers>
<asp:AsyncPostBackTrigger ControlID="DropDownlList1" EventName=
"SelectedIndexChanged" />
</Triggers>
</asp:UpdatePanel>

The <ContentTemplate> tag holds the main grid containing the content that is going to
be partially updated. The Gridview control is bound to ObjectDataSource1, which in turn is
bound to the Items dataset. Columns are set up as before with bindings to fields within



120

CHAPTER 6  USING SERVER CONTROLS IN ASP.NET AJAX

the dataset and with inline editing capability that allow these fields to be changed.
Because the grid is bound, changes to the underlying dataset trigger a refresh to the
grid and as such an update of the content via an event that fires when the bound data
changes. Really, the only trace of ASPNET AJAX visible here is the <asp:UpdatePanel>
element.

The GridView control also has some properties defined for aesthetics, such as the
AlternatingRowStyle-CssClass property, and defines its content using the <Columns> tag.
Also, you automatically get sorting and paging capability by setting the AllowPaging and
AllowSorting properties of the GridView control to true.

The <asp:CommandField> tag defines actions such as Edit and Delete, whereas the
<asp:BoundField> tag defines data fields that are bound to a data source. Lastly, the
<asp:CheckBoxField> tag, as the name implies, defines the check box for the completed
tasks. Before leaving the <Columns> tag, let’s make a very quick and easy addition to this to
be able to delete tasks. You can do so by simply adding the ShowDeleteButton property to
the <asp:CommandField> tag as shown in the following line:

<asp:CommandField ShowEditButton="True" ShowDeleteButton="true"/>

Without any additional code, this single property adds the ability to easily delete
tasks from the grid as you'll see a bit later.

After the <ContentTemplate> tag, you'll notice an <asp:AsyncPostBackTrigger>, which
is used to associate the SelectedIndexChanged event of the main DropDownlList with the
UpdatePanel as shown here:

<asp:AsyncPostBackTrigger ControlID="DropDownList1" EventName='ws
"SelectedIndexChanged"/>

The second UpdatePanel in the page is for inserting a new task and contains a
DetailsView control as opposed to a GridView inside the <ContentTemplate> tag.

<asp:UpdatePanel ID="UpdatePanel2" runat="server" UpdateMode="Conditional">
<ContentTemplate>
<asp:DetailsView ID="DetailsView1" runat="server"



CHAPTER 6 " USING SERVER CONTROLS IN ASP.NET AJAX

AutoGenerateRows="False"
DatakKeyNames="TaskId"
DataSourceID="0ObjectDataSourcel"
DefaultMode="Insert"
CssClass="detailsview"
GridlLines="None">
<Fields>
<asp:BoundField DataField="TaskId" HeaderText="TaskId" InsertVisible=
"False" ReadOnly="True"
SortExpression="TaskId" />
<asp:BoundField DataField="Name" HeaderText="Name" SortExpression="Name"
/>
<asp:CheckBoxField DataField="Complete" HeaderText="Complete"
SortExpression="Complete" />
<asp:CommandField ShowInsertButton="True" />
</Fields>
</asp:DetailsView>
</ContentTemplate>
</asp:UpdatePanel>

If you noticed, the UpdateMode property of this UpdatePanel control is set to
Conditional, meaning that it relies on external source to instigate an actual updated
rendering such as a <Triggers> tag, which was defined in the previous UpdatePanel
control. Note that these are two distinct mechanisms via which UpdatePanel implements
updates. Other than that, it’s very similar to the previous UpdatePanel control in structure,
and the <asp:CommandField> tag only has the ShowInsertButton property defined because
the user can only insert a task in this pane.

The other major portion of the markup for this page defines the ObjectDataSource
control, which handles the data for this page. But before getting into discussions about
the data side of this application, let’s try to use the app and see it in action. Figure 6-6
shows the main page after the Completed status was selected in the drop-down control
at the top of the page.

121



122

CHAPTER 6 ©* USING SERVER CONTROLS IN ASP.NET AJAX

@@ - |E http: /localhost /todolist/default. aspx E |“__‘}J |?| |Live Search ||EE|

G & [l [@umerae x[gootrne | | - B @ - rewer Qron- 7

Taskid MName
Install M5 Ajax

Complete

Insert Cancel

L Mdieclintranet J Rwo% -

Figure 6-6. Viewing completed tasks

Toggling the status between Completed and Active changes the data of the Gridview

almost instantaneously without any page refresh. Now, let’s add a new task called

“Become an AJAX expert” and click Insert on the lower UpdatePanel of the page. You'll

see the task being immediately added to the Active list as shown in Figure 6-7.



CHAPTER 6 " USING SERVER CONTROLS IN ASP.NET AJAX

)[=1/"%

. f % | -
@@ - |E| http:/flocalhostftodolist /default. aspx

][] e em B

W - | @unstedpage X]QM?’age

Edit Delete Build ToDo List Demo

Edit Delete List
Edit Delete Mare Work

Edit Delete Become an Ajax expert

Build C# version of ToDo

Mame

Complete

Insert Cancel

lj@ -@'@Eage'@ngsv»

| 4 Local intranet | #00% - .

Figure 6-7. Newly added task in the Active list

As you can see, the task was added to the active list with the TaskId of 7. The TaskId is
an identity field in the table that is simply incremented with each new addition. Now, if
you were to mark the task completed by clicking the Edit link and then checking the
Complete check box followed by the Update link, you would see the contents of the
UpdateProgress control while the update is taking place. Figure 6-8 shows the update in

progress.

123



124 CHAPTER 6 ©* USING SERVER CONTROLS IN ASP.NET AJAX

@@ - |E] http:/flocalhost ftodolist/default. aspx E“§| |z] |L|\.'e Search ||F_|T|

X 4 (G| (@ || B B 8- o Gk 7

Active || - Updating .....

Taskld Mame Complete
Edit Delete Build ToDo List Demo |

Build C# version of ToDo

Edit Delete List

Edit Delete Maore Work

Update Cancel Become an Ajax expert |

Complete

Insert Cancel

favascript: _doPostBack(cH00SContentPlacetoldert || & ocal intranet | Ro% - .

Figure 6-8. Updating a task to mark it complete

Upon updating the status change, you can switch to the Completed view by toggling
the main drop-down box, and you'll see the recently created task marked as completed as
shown in Figure 6-9. Also, you can now delete a task by simply clicking the Delete link.



CHAPTER 6 " USING SERVER CONTROLS IN ASP.NET AJAX

€ - S TREFeFEEol0rE: =JOe
@'@ - |g_| http: {localhost/todolist/default. aspx |E| |z| |L|\-'E Search ||EE|

5 @ (23] | @ untitied Page X]gﬁa\kPage j & - fmh ~ |:kPage - () Tools '_.»“

Taskld Name Complete

Edit Delete 1 Install MS Ajax

Edit Delete 7 Become an Ajax expert ||

Complete

Insert Cancel

| %4 Local intranet | Bio% -

Figure 6-9. The updated task is now in Completed status.

Let’s now turn our attention back to the code and look at the data side of this app. As
mentioned earlier, a SQL 2005 Express data file is the data container for Scott’s ToDo List
application and resides in the App_Data folder of the site. You may have to manually add
the ASPNET user of your machine to this database before being able to access it. This
database has only one table called Tasks with three fields as shown in Figure 6.10.

125



126 CHAPTER 6  USING SERVER CONTROLS IN ASP.NET AJAX

Tasks
Column Name Data Type Allow Mulls
7 TaskId int O
MName varchar{100)
Complete bit
O

Figure 6-10. Tasks table containing all data for the ToDo List application

As you can see, this table contains the bare minimum columns required to run a
ToDo List application. The first field is an int field, TaskId, which is also the primary key
of this table and thus cannot be null. It is set to Identity so that each new task gets a
unique ID (one larger than the previous ID) that increments by one for each new task
that is added. The second field is Name with varchar(100) as its type. The third and the
final field is Complete, which is just a bit field (SQL type for boolean) representing the
check box. Once again, keep in mind that you can easily modify the table and the
corresponding code to add support for additional fields or functionality.

Now that you are familiar with the extremely simple data model behind this applica-
tion, turn your attention to the <asp:0bjectDataSource> tag in the page, which controls all
interaction with the database. An ObjectDataSource control allows you to create a declara-
tive link between your web page controls and data access components that query and
update data. The control contains methods that describe how to select, insert, update,
and delete rows in the database. It’s flexible and can work with many different compo-
nents, making it suitable for an application such as this one. This ObjectDataSource
control ties to a SQL Server Express Edition database that contains the tables for the
tasks and items lists. Note that most of the code for this tag can usually be auto
generated by Visual Studio because there are great design-time tools for configuring
the ObjectDataSource control (see Figure 6.11). You can view that tool by right-clicking
the ObjectDataSource control and selecting the Configure Data Source option.



CHAPTER 6 " USING SERVER CONTROLS IN ASP.NET AJAX 127

Configure Data Source - ObjectDataSource1

Define Data Methods

SEDATE LINGERT | DELETE

Choose a method of the business ohject that returns data to assodate with the SELECT operation. The
method can return a DataSet, DataReader, or strongly-typed collection.

Example: GetProducts(Int32 categoryld), returns a DataSet.

Choose a method:

GetTasksByStatus(Nullable <Boolean= IsComplete]), returr 5_v;

Method signature:

GetTasksByStatus(Mullable <Boolean > IsComplete), returns TasksDataTable

[ < Previous “ Mext = l B

Figure 6-11. Design-time tool for configuring the ObjectDataSource control

This tool includes support for defining SELECT, INSERT, UPDATE, and DELETE operations
on the selected data source. Each tab enables you to specify which method in the under-
lying Data Access Component (DAC) class to invoke to perform a data-access operation.
For example, the SELECT tab here is linked to the GetTasksByStatus method in the DAC
class. This particular method receives a boolean parameter to indicate whether you want
to find the completed tasks or the active tasks. The ObjectDataSource control invokes this
method automatically when it needs to get task data from the database; you'll see how it
supplies the parameter (i.e., the IsComplete boolean parameter in this example) shortly.

You have probably also noticed that there is an .xsd file in the App_Code folder of this
site. This also can be (and often is) generated with the help of the aforementioned
design-time tool of the ObjectDataSource control. The actual SQL code for the various
operations, such as SELECT and UPDATE, reside here. Part of this code is shown in
Figure 6-12.



128

CHAPTER 6 " USING SERVER CONTROLS IN ASP.NET AJAX

App_Cude,-‘TaskDataSet.xsd]/ App_Code TaskDataSet. xsd ]

= <Table=z> K
= <Tableldapter BaseClass="System.ComponentModel.Component” DatalccessorMod
= <MainSource>
= <DbSource ConnectionRef="DatabaseConnectionString (Web.config)"™ DbCbhj
= <DeleteCommand>
= <DbCommand CommandType="Text" HModifiedByUser="False">»
<CommandText>DELETE FROM [Tasks] WHERE (([TaskId] = @Original_I
= <Parameters>
= <Parameter AllowDbNull="False" AutogeneratedName="" DataSourc
</Parameter>
</Parameters>
</DbCommand>
</DeleteCommands>
= <InsercCommand>
= <DbCommand CommandType="Text"” ModifiedByUser="False">
<CommandText>INSERT INTO [Tasks] |([MName], [Complete]) VALUES (@&
= <Paramseters>
= <Parameter AllowDbNull="True" AutogeneratedName="" DataSource
</Parameter>
= <Parameter AllowDbMNull="True" Autogeneratediame="" DataSource!
- </Parameter>
- </Parameters>
- </DbCommand>
- </InsertCommands>
] <SelectCommand:>
E <DbCommand CommandType="Text" ModifiedByUser="True">
= <CommandText>SELECT TaskId, Name, Complete
FROM Tasks
- WHERE (Complete = @IsComplete)</CommandText>
] <Parameters>

<Parameter AllowDbNu

'(] 1il ]

1="True"” AutogeneratediName="IsComplete"” hd

(2]

Figure 6-12. TaskDataSet.xsd containing the SQL code for the main operations

Once again, you can enter most of the query information and/or other configuration
data using a graphical interface by viewing the TaskDataSet.xsd file in design mode as

shown in Figure 6-13.

!h Tasks &
¥ Taskid

Mame

Complete

o)
=

Figure 6-13. TaskDataSet.xsd in design mode



CHAPTER 6 " USING SERVER CONTROLS IN ASP.NET AJAX

Whether done manually or by using this tool, the end result for the ObjectDataSource
control is the script code generated in the .aspx page as you can see in the following code
snippet:

<asp:0ObjectDataSource ID="ObjectDataSourcel" runat="server" DeleteMethod=
"Delete" InsertMethod="Insert" OldValuesParameterFormatString="original {0}"
SelectMethod="GetTasksByStatus"
TypeName="TaskDataSetTableAdapters.TasksTableAdapter" UpdateMethod="Update"
OnUpdating="0ObjectDataSource1 Updating">
<DeleteParameters>
<asp:Parameter Name="Original TaskId" Type="Int32" />
</DeleteParameters>
<UpdateParameters>
<asp:Parameter Name="Name" Type="String" />
<asp:Parameter Name="Complete" Type="Boolean" />
<asp:Parameter Name="Original TaskId" Type="Int32" />
</UpdateParameters>
<SelectParameters>
<asp:ControlParameter ControlID="DropDownlList1" Name="IsComplete"
PropertyName="SelectedValue" Type="Boolean" />
</SelectParameters>
<InsertParameters>
<asp:Parameter Name="Name" Type="String" />
<asp:Parameter Name="Complete" Type="Boolean" />
</InsertParameters>
</asp:0bjectDataSource>

The parameters are clearly defined by their intended operations (e.g., InsertParameters,
UpdateParameters, etc.). The SQL operation method name attributes are equally well
defined with names such as SelectMethod and UpdateMethod. The ObjectDataSource is a
great control for small web applications but may not always be so ideal for larger and
more sophisticated apps that need logical and physical separation of the data tier that
has complex data objects and a data access layer.

Summary

The ToDo List application is an excellent example of an ASPNET application and how it
can be enhanced with AJAX functionality using ASPNET AJAX server controls. The server
control set you saw in the previous chapter has been carefully designed and imple-
mented to allow you to enhance existing applications as easily as possible and in a
manner that involves touching your existing code as little as possible.

Additionally, for new applications, it involves reusing your existing skills in ASPNET
and lowers the learning curve drastically.

129






CHAPTER 7

Using the ASP.NET AJAX Control
Toolkit (Part 1)

By now, you are quite familiar with the ASPNET AJAX server controls and have seen
many examples of their use. The first release version of ASPNET AJAX also shipped with a
set of controls packed under the ASPNET AJAX Toolkit moniker. These are open source
control extensions that have been created by Microsoft as well as the broader commu-
nity. This package is readily available at http://ajax.asp.net along with documentation
and instructional videos. You can also obtain the latest source code at CodePlex
(http://codeplex.com), Microsoft’s open source project depository. Either way, you have
the option to download just the binaries or the full source code.

You will find the ASPNET AJAX Control Toolkit extremely useful because it contains
some very rich UI functionality ideal for AJAX-enabled Web 2.0 sites. And the best part is
that these controls are just as easy as other server controls to use. You don’'t have to write
any custom JavaScript to add effects to your page. The controls in this toolkit are also often
referred to as control extenders because they rely on existing ASPNET server controls and
augment them with built-in client-side JavaScript code to provide impressive effects.

You can also easily create your own custom extensions because this toolkit also
comes with Visual Studio templates to assist you. At the time of this writing, there are
about 40 controls (there will most likely be even more controls due to community contri-
butions by the time you read this), which we will cover in this and the next chapter. As
you work through this chapter and the next, you'll learn more about the structure of
these control extenders and how they complement the existing ASPNET server controls.
You will also see by example, going through most of the controls this toolkit offers and
finding out how to use them in your applications. The examples in this chapter only
cover the basics of this toolkit and, in some cases (such as the animation control), there
is much functionality that is beyond the scope of this chapter.

Installing the ASP.NET AJAX Control Toolkit

The ASPNET AJAX Control Toolkit is not a stand-alone entity and requires ASPNET AJAX
to be installed because it heavily relies on certain controls, such as ScriptManager, and

131


http://ajax.asp.net
http://codeplex.com
http://codeplex.com

132

CHAPTER 7 " USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

libraries for its infrastructure. Also, at the time of this writing, unlike the ASPNET AJAX
installable . Msi package, the toolkit is simply shipped as a ZIP file containing the source
code and therefore requires a little work before it’s ready to use.

You can download the ASPNET AJAX Toolkit at http://ajax.asp.net/downloads. After
unzipping the files to a folder such as AjaxToolKit, you can add the controls to your Visual
Studio 2005 toolbox. First create a new tab in the toolbox, and name it something similar
to ASPNET AJAX Control Toolkit. After that, right-click the new tab, and select Choose
Items from the context menu. At that point, simply browse to the designated folder to
which you had extracted the compressed files, and you'll find a DLL named
AjaxControlToolkit.dll in a subfolder of the Bin folder. Selecting this file populates the
controls in the new tab created in your toolbox as shown in Figure 7-1. You are now ready
to use these controls in your ASPNET AJAX-enabled web application.

= ASP.NET Ajax Control Toolkit
ke Pointer

E Accordion

AccordionPane

(' AlwaysiisibleControlExtender
i AnimationExtender
== AutoCompleteExtender

= CalendarExtender

et Fr

CascadingDroplown
CollapsiblePanelExtender
ConfirmButtonExtender
DragPanelExtender
DropDownExtender
DropShadowEstender

‘_.
Lo
1]

I ENRAEE M i

DynarmicPopulateExtender
FilteredTextBoxExtender
HoverfbdenuBxtender
ListSearchExtender
MaskedEditExtender
MaskedEditvalidator
2] ModalPopupEstender
B MutuallyExclusiveCheckBoxExtender
(F MoBot
MurnericUpDownExtender
:=: PagingBulletedListExtender

i1 i)
&

| =
=t U}

=~ PasswordStrength

v PopupContralExtender
#imz Rating

GH Danvdad ok

Figure 7-1. ASBNET AJAX Control Toolkit toolbox in Visual Studio 2005


http://ajax.asp.net/downloads

CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

Alternatively, you can open and build the TemplateVSI project, which creates a new
project template to Visual Studio 2005 for creating ASPNET AJAX Control Toolkit web
sites. Now let’s talk about the individual controls in this toolkit and see how they can be
used.

The Accordion and AccordionPane Gontrols

You have most certainly seen this UI element in one form or shape before. Outlook 97
was one of the first big applications to use this type of information organization in a UL
Basically, this control includes multiple panes where only one pane at a time is displayed
with the rest of the panes visible in a collapsed manner showing only the headers (as the
Accordion name suggests). The Accordion control, much like many others in the AJAX
Control Toolkit, derives from the WebControl class. It is used in conjunction with Accor-
dionPane controls, which represent the actual panes. These AccordionPane controls are
held within the <Pane> tag of the Accordion control. You'll explore the Accordion control in
more depth through an example but first some of its properties are listed in Table 7-1.

Table 7-1. A Few of the Accordion Control Properties

Property Name Description

AutoSize Controls the growth and collapse of the panes. There are three
enumerations: None, Limit, and Fill. None allows the control to grow
unrestricted, whereas Limit confines the maximum size of the
accordion by the Height property. Fill always keeps the size of the
overall accordion constant.

ContentCssClass CSS class applied to the content.

DataMember Field name of the data source (databinding).

DataSource Data source used for binding (databinding).

DataSourceID The ID of the data source control.

FramesPerSecond Frames per second used for animation during the transition between
panes.

FadeTransitions Boolean value indicating whether or not to apply the fade effect during
transition.

HeaderCssClass CSS class applied to the header.

RequireOpenedPane Boolean value indicating whether or not a pane is always open.

SelectedIndex The initial pane that is visible in the accordion.

SuppressHeaderPostbacks Blocks events from the controls in the header of the accordion.

TransitionDuration The duration of the transition animation for when one pane is closing
with another one opening (in milliseconds).

133



134

CHAPTER 7 " USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

To see this control in action, you will create a simple page with an Accordion control
that has three sections each containing four lines of text. First, you drag and drop an
Accordion control on a new AJAX-enabled .aspx page. As always, remember to have
already added the ScriptManager control to the page when working with any of the
control extenders in the AJAX Control Toolkit if the created web application project
or web site was not AJAX enabled. Set the FramesPerSecond property to 30 and the
TransitionDuration to 100 ms. Within the Accordion control, first create a <Panes> tag
followed by three <AccordionPane> tags with the corresponding text within the <Panes>
tag as shown in the following code snippet:

<ccl:Accordion ID="Accordion1" runat="server"ws
FadeTransitions="true" FramesPerSecond="30"
TransitionDuration="100" AutoSize="None">
<Panes>
<ccl:AccordionPane ID="AccordionPanel" runat="server">
<Header>w»
<div style="background-color:Black; color:White;
font-weight:bold;"> Section 1</div>
</Header>
<Content>
Item 1 <br>
Item 2 <br>
Item 3 <br>
Item 4 <br>
</Content>
</ccl:AccordionPane>
<ccl:AccordionPane ID="AccordionPane2" runat="server">

</cci1:AccordionPane>
<ccl:AccordionPane ID="AccordionPane3" runat="server">

</cc1:AccordionPane>
</Panes>
</cc1:Accordion>

As you can see, the AccordionPane tags are within the <Panes> tag of the Accordion
control. The <Panes> tag is a container for one or more <AccordionPane> tags. When you
run this page in the browser, you'll see the collapsible panels (see Figure 7-2). Additional
styling code has been added to signify the three sections, which is why the three sections
have different shades.



CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

f:‘ Accordion sample - Windows Internet Explorer 1Ol x|
—
S |g http:,l',flocalhost:‘tQZD:j || XK ILive Search
'ii'? & :@Accordion sample | | f-ﬁﬁ @ E K Eéé < i

Ttem 1

Ttem 2

Ttem 2

Ttem 4

Section 2

[~

I_l_l_mlg Internet | Protected Mode: OFF | 100 - v

Figure 7-2. The Accordion control with three headers

If you view the browser output from this page, you'll notice that a collection of <div>
tags with a lot of JavaScript is used to simulate the accordion effects on the client
browser. This JavaScript was dynamically emitted by the Accordion control in conjunction
with support from the ScriptManager.

AlwaysVisibleControlExtender Control

This self-descriptive control needs little introduction as its name more or less sums up its
functionality. You can use this extender to pin down a control, or a composite control
containing other controls, to a part of the page. AlwaysVisibleControlExtender then makes
sure that the target control remains visible irrespective of window resizing or scrolls up
and down. It also has properties to allow for specific displacement in the page as shown
in Table 7-2.

135



136

CHAPTER 7 " USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

Table 7-2. AlwaysVisibleControlExtender Control Properties

Property Name Description

HorizontalOffset Horizontal displacement from the edge of the browser window (in
pixels)

HorizontalSide Horizontal placement of the control (left, center, right)

ScrollEffectDuration Duration of the scrolling effect when the target control is being
repositioned to the same relative place in the screen

TargetControlID The ID of the control to be pinned down and always visible

VerticalOffset Vertical displacement from the edge of the browser window (in pixels)

VerticalSide Vertical placement of the control (top, middle, bottom)

You have surely seen this type of control before in web pages. Often, the control is
used as a quick customer feedback control or for an advertisement of some sort. It’s usu-
ally best to use absolute positioning (DHTML) for control(s) used with this extender,
otherwise, the AlwaysVisibleControlExtender may at times exhibit unexpected behavior.
As mentioned earlier, you can use this extender with composite controls such as panels
containing other controls, but for simplicity, the following example just uses an ASPNET
Label control as the target control:

<ccl:AlwaysVisibleControlExtender ID="AlwaysVisibleControlExtender1"ws
runat="server" TargetControlID="Label1" HorizontalOffset="2"ws
ScrollEffectDuration="1" HorizontalSide="Right" VerticalSide="Top" >

</cc1:AlwaysVisibleControlExtender>

<asp:lLabel ID="Label1" runat="server" BackColor="#0000C0" Font-Bold="True"w
Font-Size="Larger" ForeColor="White" Height="28px" Text="ASP.NET w»
AJAX" Width="127px">

</asp:Label>

The preceding code snippet uses the AlwaysVisibleControlExtender to pin down a
Label control to the top right of the screen. When scrolling down to see if there are pages
of content below it, you would notice that this Label control is static in its top-right cor-
ner of the page position as shown in Figure 7-3.



CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

/2 nlwaysvisibleControlExtender - Windows Interne 1O x|

——

=1 =9 |g, http:,l',l'localhost:49202j | A ILive Search

|g§v@vmvll_?}’Eagev))

ASP.NET Ajax S

v gk & AlwaysvisibleControlExten. ..

[
rl_l_l_m|@ Intermet | Pratected Mode: OFF | FA00% -z

Figure 7-3. Using the AlwaysVisibleControlExtender to pin down a label on the top-right
part of the page

The AnimationExtender Control

The Animation control is by far the most capable and feature-packed control in the
ASPNET Control Toolkit. It provides excellent support for a wide range of animation fea-
tures in an AJAX-enabled ASPNET page. This powerful control, which can also be
considered a framework given its depth, enables rich animation in a declarative/XML
fashion. Coverage of this control in its entirety is well outside the scope of this chapter,
so we'll cover only a few animation types.

The AnimationExtender control attaches on to some of the key events of the target
control within the page, such as Onclick, OnMouseOver, and so on. The target control is
specified with the TargetControlID property. The AnimationExtender control also provides
the means to manage the target control and/or other controls involved in animation via
actions. Actions allow you to include/exclude certain controls from the animation, and
restrict their behavior and visibility, among other things. To better understand the
Animation control, let’s now explore three of the many supported animation types: fade
animation, length animation, and discrete animation.

137



138 CHAPTER 7 " USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

Using Fade Animation

The first animation that we’ll look at is the fade animation, which as the name implies,
allows you to add fading effects to a control on your page. Two types of fading animation
are supported: FadeIn and FadeOut. To illustrate fade animation, let’s look at a small exam-
ple that shows a control fading in and out. The target control is a Label control with blue
text and yellow background.

<asp:Label ID="Label1" runat="server" BackColor="Yellow" Font-Size="X-
Large"
ForeColor="Blue" Height="68px" Text="Fading In & Out" Width="165px">
</asp:Label>
<ccl:AnimationExtender ID="AnimationExtender1" TargetControlID="Labell"w=
runat="server">
<Animations>
<OnMouseOver>
<FadeOut Duration="1.5" Fps="30" />
</0OnMouseOver>
<OnMouseOut>
<FadeIn Duration="1.5" Fps="30" />
</0OnMouseOut>
</Animations>
</ccl:AnimationExtender>

After running this page, you will see that when you hover the mouse over the Label
control, it begins to fade as shown in Figure 7-4.



CHAPTER 7

USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

/2 untitled Page - Windows Internet Explaorer =101 x|

) =[] hepsiocaost4sz0. ] |49 | 5 | [urve search

iE G @ Untited Page | | -8 - =~ =
=
[

H_l_lﬁlg Internet | Protected Mode: GFF | o100 - 5

Figure 7-4. Hovering over the Label control makes it start to fade out.

Subsequently, when the mouse cursor is moved away from the Label (target control)
control, it starts fading right back in (see Figure 7-5).

139



140

CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

ﬂi Untitled Page - Windows Internet Explorer ) Ol x|
——,
L& L3 I I.Q. http:,l',l'localhost:49202j X ILi\.re Search
ru.'.’ ‘1}1‘1’ '_éLlntitled Page | l {fi\? . & rm X =
_ i =
Fading In & Out
i
H_I_ l-ﬁ.ﬂ@ Internet | Protected Mode: OFF | £ 100% - 5

Figure 7-5. Moving the mouse away from the target control makes it fade back in.

In the code segment, the <OnMouseOver> event was defined along with the <FadeOut>
tag. After that, the exact opposite was done with the <OnMouseOut> event over <FadeIn> tag.
In both cases, the Fps (frames per second used for the animation) property was set to 30
and the Duration (duration of the animation) property set to 1.5 seconds.

Using Length Animation

The length animation changes the state of a property between a start value and an end
value that you can specify. You can typically use this to animate the setting of the width or
height of a control that uses them. Before you see a short example, look at the properties
of the <Length> tag used in length animation as listed in Table 7-3.



CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

Table 7-3. Properties of the <Length> Tag

Property Name Description

AnimationTarget The target control for the animation. This is the control that will be
affected as the result of the animation.

Duration Duration (in seconds) that it should take to play the animation.

EndValue The end value of a specified range used for animation.

Fps Frames per second used for the animation. Higher FPS values can yield
smoother animation but are potentially slower.

Property The property that will be the target for the animation (e.g., Height).

PropertyKey Property key of the target control.

StartValue Starting value of a specified range used for animation.

Unit Actual unit of the property such as % or px (px by default).

Once again, to understand this animation type better, examine the following small
code segment:

<asp:Image ID="Image1l" runat="server" ImageUrl="sample.jpg" />
<ccl:AnimationExtender ID="AnimationExtender1" TargetControlID="Imagel"w
runat="server">
<Animations>
<OnClick>
<Sequence>
<Length AnimationTarget="Image1l" fps="30" property="style"
propertyKey="width" startValue="800" endValue="200"
duration="15" unit="px" />
</Sequence>
</0nClick>
</Animations>
</ccl:AnimationExtender>

Here you have an <asp:Image> control with an image being the target control of the
animation. The actual animation is defined where a sequence is described within the
<OnClick> event of the image control. The length animation itself is defined in a single
line with the <Length> tag and its corresponding properties. This <Length> tag resides
inside a <Sequence> tag, which basically defines an animation sequence segment. Start by
setting the AnimationTarget property to the target control, Imagel. The default unit on the
length animation property is "px", so the animation will change the width property to a
number of pixels.

141



142

CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

You define this number by specifying startValue and endValue. In this case, set
startValue to 800, and set endValue to 200. Because you want these values to apply to the
width of the image, set the Property to "style" and the PropertyKey property to "width".
Finally, set the duration to 15. This means the values 800px-200px will be sent to the width
property of the image over a duration of 15 seconds. Changing the duration to a smaller
value will mean that the image will grow to its final size more quickly, and changing it to
a larger value will mean that it grows more slowly.

Additionally, the animation is smart enough to know that if startValue is greater than
endValue, the animation will play backward, reducing the text from startValue to endValue,
and in a case like this, the image will shrink in size over the specified duration.

You can see the length animation in action in Figure 7-6, Figure 7-7, and Figure 7-8.
Figure 7-6 shows the application before the animation begins, Figure 7-7 shows the ani-
mation as it is in progress and the image is growing, and Figure 7-8 shows the completed
animation.

ﬂj Length Animation Sample - Windows Internet Explorer = Ellll
ke If.‘_ http: jflocalhost; 49205 Ajax Toolkit/LengthAnimation. aspx j || K Iles Search poliie
©¢ €l @ Length Arimation Sample I X v B - d=h v |hPage v (0 Taok v 7
=
[—— Closing Price —— High BE —— Low BB |
L ——T——————— ———T—T——7T T T——T—T— T
703 H
80 + J
a0 —:— e
40+ .
o3+ b
20+ 1
10 {f o
01—+ 1 el S } il e } A i ——————+ +
Jun-200 Aug-2005 Oct-2005 Dec-2005 Feb-2008 Apr-2006
-]
[pone [ [ [ [ 8 & mntemet | Protected Mode: OFF [H00% -

Figure 7-6. Beginning the animation



CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

/2 Length Animation Sample - Windows Internet Explorer i) =y Ellll

e E 1
(GAS IE, http:,i,l’lncalhost:49203,|’AjaxToDIkit,l’LengthAnimation‘asj sl ILive Search

BE

ﬁ it @Length Animation Sample | | @ - - @ > i'_;}’Eage 2 .{;r Tools - 5

[—— Tinwing Prier: —— HIghFa — T
0] T T T

=l
wi Py
i O e \
B
s

=l

w4

(= t + + 1
dunn Uy S [N 1. IR 1. FebALE AL ALE

=

|

|Dnne l_ l_ l_ l_ l_ 'ﬁ |@ Internet | Protected Mode: OFF L 100%

T 4

Figure 7-7. The animation as it progresses

f," Length Animation Sample - Windows

\?* ‘-C_,’.” - IE, http:,l’,l'localhost:‘IQZDij "'?. | x : ILi\.fe Search

'ﬂ? dﬁ? @Length Animation Sample | | E} B - =4

=

% sk
K
’E|@ Internet | Protected Mode: Off | H100% - 4

Figure 7-8. The completed animation

143



144

CHAPTER 7 " USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

Using Discrete Animation

Discrete animations are similar to length animations in that they will cycle through a
range of values during a fixed duration. For both of these animation types, you specify
the values, and the Animation framework calculates the interim values for the animation.
The main difference is that the discrete animation tag (<Discrete>) uses a parameter
called ValuesScript as opposed to StartValue and EndValue properties that the <Length>
tag uses for animation. The ValuesScript property usually contains a comma-separated
list of values that resemble a JavaScript array. The animation then goes through these val-
ues and applies them to the indicated property/propertyKey properties for the duration of
the animation. To better understand this, look at the following code segment:

<asp:Image ID="Imagel" runat="server" ImageUrl="sample.jpg" />
<ccl:AnimationExtender ID="AnimationExtender1" runat="server"w
TargetControlID="Imagel">
<Animations>
<OnClick>
<Sequence>
<Discrete fps="30" Duration="10" Property="style"
PropertyKey="width"ValuesScript="["'700", '600', '500',
400", '300']"/>
</Sequence>
</0nClick>
</Animations>
</ccl:AnimationExtender>

In this case, five numbers will be the different width values for the image during the
animation, but it can be any width value within the visible screen size. The end result will
be very much like the previous example, but instead, the image will shrink in set time
intervals (2 seconds in this case because there are five items in the animation with a total
duration of 10 seconds) as opposed to the continuous shrinking you saw using length
animation.

AutoCompleteExtender Control

The AutoCompleteExtender control is used to suggest text as a user types into a text box and
therefore needs to be associated with an ASPNET TextBox control. You may think that
most browsers already have the AutoComplete feature turned on because you often see
your name, phone number, and other frequently entered information appear with Auto-
Complete as you type in the same information in other sites. But there is a distinct
difference. The kind of AutoComplete that most browsers have support for only works for



CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

certain fields where it recognizes the field type and suggests text based on your previous
entries.

The AutoCompleteExtender control allows you to define a web service as the data
provider for suggestions. It can query this web service and serve the data back to the
client in true AJAX form without the user noticing any postbacks. The properties of this
control are listed in Table 7-4.

Table 7-4. Attribute Properties of the AutoCompleteExtender Control

Property Name Description

CompletionInterval Elapsed time between suggestions (in milliseconds)
CompletionSetCount Number of suggestions to get from the web service
EnableCaching Boolean value indicating whether or not client caching is enabled
MinimumPrefixLength Minimum number of characters before suggestions are made
ServiceMethod Name of the web method used to retrieve the suggestions
ServicePath Path of the web service used to retrieve a list of suggestions
TargetControlID Target TextBox control for which suggestions will be made

To see this control in action, you would need to create a web service in addition to
the ASPNET page in which the AutoCompleteExtender will reside. But first, let’s start
with the page itself. Create an ASPNET TextBox control on the page, followed by the
ScriptManager and the AutoCompleteExtender control. After that, specify the parameters
as shown here:

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
<ccl:AutoCompleteExtender ID="AutoCompleteExtender1"
ServicePath="AutoComplete.asmx" MinimumPrefixLength="3"
ServiceMethod="GetSuggestedStrings" TargetControlID="TextBox1"
CompletionInterval="10" CompletionSetCount="3"
EnableCaching="true" runat="server">
</ccl:AutoCompleteExtender>

The code basically set the AutoCompleteExtender control up to suggest three pieces of
text as long as at least three characters have been entered into the text box. The code also
specified the ServicePath and set the ServiceMethod property to GetSuggestedStrings, so
the control now expects this web method as its data source for the suggestions. The
expected web service method must match the following signature:

public string[] GetSuggestedStrings(string prefixText, int count)

145



146

CHAPTER 7 " USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

The name of the method of course can be different from what is listed here, but the
parameters and return types much match that exactly, or the AutoCompleteExtender will
not work properly. With that in mind, create a new .asmx page and use the following code
to create the main web method:

[WebMethod]
public string[] GetSuggestedStrings(string prefixText, int count)
{
//Default to 3 if the count is zero
if (count == 0)
count = 3;
List<string> stringlist = new List<string>(count);
for (int i = 0; i < count; i++)
{
stringlist.Add(prefixText + i.ToString());
}

return stringlist.ToArray();

}

This simple web method returns at least three suggested strings that, for the pur-
poses of this sample, are simply the prefix with the index number of the list array. In most
practical cases, you want to use more complex logic for suggestions of value, but you
must be careful about performing very long and resource-intensive operations here. If
you are planning to make database calls with intricate queries, make sure you have done
ample testing to ensure its feasibility because the suggestions are useless if they take a
long time to return. When you run this page in the browser, you can see the suggested
terms three at a time as you type in the text box (see Figure 7-9).



CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

/2 autoCompleteExtender Sample - Windows Internet Explorer [ =] |
@‘—‘/ - Ié, http:,I',I'Iocalhost:4920SJ'AjaxToolldt,l'AutoComplej || XK ILive Search L2 |-
" ~ = ! »
A (& AutoCompleteExtender Sample | | % - B - = - |k Page + (G Todks -
=
abc
abco
abcl
abc2
H
|D0ne l_l_l_l_l_mlg Internet | Protected Mode: OFF FA00% v g

Figure 7-9. TextBox in a page suggesting terms

CalendarExtender Gontrol

ASPNET already provides a great and capable Calendar control. However, it requires post-
backs for many of its operations. The CalendarExtender control in the ASPNET AJAX
Toolkit enables better overall user experience with its enhanced visual capabilities and
postback-free performance. This control is used in conjunction with a TextBox control
and has four properties as listed in Table 7-5.

Table 7-5. Attribute Properties of the CalendarExtender Control

Property Name Description

CssClass The CSS class used for the CalendarExtender control

Format Format string for the date generated

PopupButtonID The ID of the Button control used to show the CalendarExtender control

TargetControlID

(optional)

ID of the corresponding Textbox to be used

147



148

CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

This is a very simple and straightforward control to use. Simply drag and drop the
CalendarExtender control on a page along with a TextBox control, and set the appropriate
properties similar to the following code snippet:

<asp:TextBox ID="TextBox1" runat="server" Width="173px"></asp:TextBox>

<ccl:CalendarExtender ID="CalendarExtender1" TargetControllID=
"TextBox1" runat="server">

</cci1:CalendarExtender>

When you run this page, you only have to click the text box to see the Calendar

control pop up with the result of the date selection entered into the text box as shown
in Figure 7-10.

f:_‘ Untitled Page - Windows Internet Explorer 3 =101 x|
——
e T I.’é. http:,f,l'localhost:49203,l'.j * | AR ILive Search 2|~
U8 0 @ Untited Page | | 5 - B - ® - [hPage - G Tools - 7
[—
5/272007
1 May, 2007 3
Su Mo Tu We Th Fr Sa
2 30 1 2] 3 4 5
& 7 8 9 10 11 12
13 14 15 16 17 18 19
20 021 22 23 24 25 X%
27 28 29 30 31 1 2
3 4 5 & 7 8 9
Today: May 4, 2007
a
Done I_l_l_l_l_mlg Internet | Protected Mode: OFF E100% - v

Figure 7-10. ASPNET AJAX Calendar control

Notice the great transition from month to month when you click on the arrows of the
Calendar control. Of course, you can further enhance the appearance of the control by
using CSS and assigning it to the CssClass property of the Calendar control. Also, if you
click on the month (on top of the control), the calendar switches to the year view (see
Figure 7-11).



CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

/2 untitled Page - Windows Intes o ] |
e ] nitpsisiocathostiaszo z] | 44| X | [uive :
'L? “ﬁ; @Untitled Page | | f‘? -
=]

IMay 2, 2007
4 2007 3

Jan Feb Mar Apr

May Jun Jul Aug

Sep Oct Mow Dec

Today: May 4, 2007

[-|

|@ Internet | Protected Mode: QFf | 00 -

Figure 7-11. ASPNET AJAX Calendar control (Year view)

Lastly, if you wanted to have a little button next to the text box as the agent to open
the calendar, all you have to do is set the PopupButtonID property of this control to the ID
of the button.

CascadingDropDown Control

The CascadingDropDown control is ideal for situations when you need to have multiple
drop-downs on a web page with the value(s) of each drop-down control being dependent
on the selection from the previous one. In fact, you've probably seen many sites taking
advantage of this pattern. For instance, when you visit your printer or other computer
accessories’ manufacturer site in search of the appropriate driver(s), you are often pre-
sented with a list of drop-down controls in order to find the right model.

CascadingDropDown, much like the AutoCompleteExtender control, relies on web services
to provide the necessary data. This allows for much flexibility in retrieving the data. You
could, for instance, fetch the data from a database, serialized file, XML file, or some third-
party source. Before jumping right into an example, Table 7-6 shows the properties of the
CascadingDropDown control.

149



150

CHAPTER 7 " USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

Table 7-6. Properties of the CascadingDropDown Control

Property Name Description

Category Category name of the CascadingDropDown control

LoadingText Status text shown on the control itself while the data for the drop-down
is being fetched

ParentControlID The ID of the other drop-down control whose selection impacts this
control

PromptText Text shown if the drop-down is empty

ServiceMethod Name of the web method used to retrieve the data

ServicePath Path of the web service used to retrieve the data

TargetControlID ID of the target corresponding DropDown control

You may have also seen cascading drop-downs on many car shopping/searching
sites, in which you start with the manufacturer of the car and end up with the exact
model of the car. We'll look one such example, which comes with the full-source version
of the ASPNET AJAX Control Toolkit available for download at http://ajax.asp.net.

After you load the solution into Visual Studio, under the SampleWebSite project,
locate the CascadingDropDown folder with an .aspx and .asmx page. Set CascadingDrop-
Down.aspx as the start page, and then run the application (Ctrl+F5). You are presented
with three drop-down controls asking you to enter the make, model, and color of a car.
With each selection, the values of the subsequent drop-down control change, and the
complete specs of the car are displayed (see Figure 7-12).


http://ajax.asp.net

CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1) 151

ASP.NET AJAX Control Toolkit

CascadingDropDown Demonstration

Make |BMW =
M-:dellS series j
Color {ZINTSMMRNE——— -

You have chosen a Blue BMW 3 serigs. Nice carl

=

[Hio0% -

4
[ 1T [ [ T3] wemek | Potesied Hack: off

Figure 7-12. Selecting a car using CascadingDropDown controls

Let’s examine the markup for this page:

<div class="demoheading">CascadingDropDown Demonstration</div>
<table>

<tr>
<td>Make</td>
<td><asp:DropDownList ID="DropDownlList1" runat="server"
Width="170" />
</td>
</tr>
<tr>
<td>Model</td>
<td><asp:DropDownList ID="DropDownlList2" runat="server"
Width="170" />
</td>
</tr>
<tr>



152 CHAPTER 7 " USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

<td>Color</td>
<td><asp:DropDownList ID="DropDownlList3" runat="server"
Width="170" AutoPostBack="true" OnSelectedIndexChanged="DropDownList3
SelectedIndexChanged" />
</td>
</tr>
</table>
<br />

<ajaxToolkit:CascadingDropDown ID="CascadingDropDown1" runat="server"
TargetControlID="DropDownlList1" Category="Make"
PromptText="Please select a make"
LoadingText="[Loading makes...]"
ServicePath="CarsService.asmx"
ServiceMethod="GetDropDownContents" />

<ajaxToolkit:CascadingDropDown ID="CascadingDropDown2" runat="server"
TargetControlID="DropDownList2" Category="Model"
PromptText="Please select a model"
LoadingText="[Loading models...]"
ServiceMethod="GetDropDownContentsPageMethod"
ParentControlID="DropDownlList1" />

<ajaxToolkit:CascadingDropDown ID="CascadingDropDown3" runat="server"
TargetControlID="DropDownlList3" Category="Color"
PromptText="Please select a color" LoadingText="[Loading
colors...]" ServicePath="CarsService.asmx"
ServiceMethod="GetDropDownContents" ParentControlID="DropDownList2" />

</div>

The three ASPNET drop-down controls at the beginning of this code segment make
up the three selection points, which are followed by the three CascadingDropDown controls.
Each of these extender controls specifies the corresponding drop-down (by using the
TargetControlID property) as well as the ServicePath ServiceMethod properties, which will
be used as a data source. And that’s it! Beyond that, there is a little more code on the web
form itself that displays text to the users in the appropriate event handlers. The rest of the
work is done in a web service as listed here:

[WebMethod]
public AjaxControlToolkit.CascadingDropDownNameValuel]
GetDropDownContents(string knownCategoryValues, string category)



CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

StringDictionary knownCategoryValuesDictionary = AjaxControlToolkit.
CascadingDropDown.ParseKnownCategoryValuesString(knownCategoryValues);

return AjaxControlToolkit.CascadingDropDown.
QuerySimpleCascadingDropDownDocument(Document, Hierarchy,
knownCategoryValuesDictionary, category);

The main part of this web service is the GetDropDownContents web method shown in
the preceding code segment. This method first gets a dictionary object of known cate-
gory/value pairs and queries the data document for results. This data document is
nothing more than an XmlDocument object loaded with data from an XML file. In fact, if
you look in the App_Data folder in the solution, you'll see an XML file called
CarService.xml, which holds the data for the drop-down controls. Figure 7-13 shows the
contents of CarService.xml.

App_Data,/CarsService.xml ]/' CascadingDrop. . .opDown. aspx,cs ] -
k?xml version="1.0" encoding=rucf-5r I

E <Carsiervices>

E <make name="Aouras

= <tode ]l name="Integra’>
<oolor name="Green" f>

[

<oolor name="3ea Green" S
<oolor name="Pale Green™ /x
- </ mode 1>
= <model nsme="REL":>
<oolor name="Red" />
<zolor name="BEright Red™ /> b
o </ mode 1>
= <model name="TL":>
<polor name="Teal™ />
<color name="Dark Teal" /-
o </mode 1>
Fo </ makes
= <take name="iudi" value="Audi (value) ">
E <iodel name="L4" vgluse="Aid [(value) ">
<zolor name="Azure” wvalue="Lzure (values)'" />

<oolor name="Light ALzure" valus="Light Azure [(value)]" />
<oolor name="Dark Azure™ valus="Dark Lzure (valus)" />

o </ mode 1>

= <tode l name="547 valus="54 (value) ">

<oolor name="3ilver™ wvalus="Silver (value)" />
<zolor name="Metallic™ walus="MNetallic (values]" /=

- </ mode 1> i
| | 3

Figure 7-13. CarService.xml

153



154

CHAPTER 7 " USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

CollapsiblePanelExtender Gontrol

The CollapsiblePanelExtender control allows you to easily make visually appealing col-
lapsing and expanding effects on panels used in your web page with minimal code. This
extender is quite simple yet very flexible and is particularly useful in scenarios where you
have large amounts of text, some of which does not need to be initially presented to the
users. Also with many useful properties, its collapse/expansion behavior can be well cus-

tomized. This includes the ability to have the panel auto expand or auto collapse
depending on the mouse hovering. Table 7-7 lists some of the properties of the
CollapsiblePanelExtender control.

Table 7-7. Properties of the CollapsiblePanelExtender Control

Property Name Description

AutoCollapse Boolean value indicating whether or not to collapse the panel when the
mouse moves away from it

AutoExpand Boolean value indicating whether or not to expand the panel when the
mouse hovers over it

Collapsed The initial state of the panel

CollapseControlID ID of the control responsible for collapsing the panel

CollapsedImage Path to the image file used by ImageControlID (when collapsed)

CollapsedSize Collapsed size of the target control in pixels

CollapsedText Displayed text when the panel is collapsed

ExpandControlID ID of the control responsible for expanding the panel

ExpandDirection Direction of expansion of the panel (horizontal/vertical)

ExpandedImage Displayed image when the panel is expanded

ExpandedSize Expanded size of the target control in pixels

ExpandedText Displayed text when the panel is expanded

ImageControlID ID of the image control serving as status indicator for the state of the
panel (collapsed/expanded)

ScrollContents Boolean value indicating whether or not to make the panel scrollable

TargetControlID ID of the target panel control

TextLabelID ID of the Label control containing the status text of the panel

Let’s turn our attention again to the SampleWebSite project that ships the full source
version of the ASPNET AJAX Control Toolkit where the CollapsiblePanel is used exten-
sively in nearly all pages. Specifically, in Solution Explorer, expand the CollapsiblePanel
folder, and take a look at the CollapsiblePanel,aspx page where the focus is this extender.



CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

For the purposes of this demo, let’s focus only on the first panel on top of the page as
shown in Figure 7-14.

f," CollapsiblePanel Sample - Windows Internet Explorer ;Iglgl
@‘\;; - Ine'-'t http:,l',l'ajax.asp.net,l'ajaxtuj :*‘:P_: x ILive search |2 |-
4 A = »
00 < CollapsiblePanel Sample | | f - B - omb o+ =2k Page » (G Tooks ~
]

il

CollapsiblePanel Demonstration

What is ASP.NET AJAX?  (Show Detaiks...) 8
il I _>|_I

l_l_l_’_’_m|9 Internet | Protected Maode: OFF | HL00% - s

Figure 7-14. Example of CollapsiblePanel (in collapsed mode)

This portion of the page consists of two panels with a CollapsiblePanelExtender, and
it displays some basic information about ASPNET AJAX. There is a little image on the
right side of the panel that collapses or expands the panel when clicked. Here’s the .aspx
markup for this portion of the page:

<asp:Panel ID="Panel2" runat="server" CssClass="collapsePanelHeader" Height="30px">
<div style="padding:5px; cursor: pointer; vertical-align: middle;">
<div style="float: left;">What is ASP.NET AJAX?</div>
<div style="float: left; margin-left: 20px;">
<asp:Label ID="lLabel1" runat="server">(Show
Details...) =
</asp:Label>
</div>
<div style="float: right; vertical-align: middle;">
<asp:ImageButton ID="Imagel" runat="server"
ImageUrl="~/images/expand_blue.jpg" AlternateText="
(Show Details...) " />
</div>
</div>
</asp:Panel>
<asp:Panel ID="Panel1" runat="server" CssClass="collapsePanel" Height="0">
<br />

155



156

CHAPTER 7 " USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

<p>
<asp:ImageButton ID="Image2" runat="server"

ImageUrl="~/images/AJAX.gif"
AlternateText="ASP.NET AJAX" ImageAlign="right" />
<%= GetContentFillerText() %>
</p>
</asp:Panel>
</div>

<ajaxToolkit:CollapsiblePanelExtender ID="cpeDemo" runat="Server"
TargetControlID="Panel1"
ExpandControlID="Panel2"
CollapseControlID="Panel2"
Collapsed="True"
TextlLabelID="Label1"
ExpandedText="(Hide Details...)"
CollapsedText="(Show Details...)"
ImageControlID="Image1"
ExpandedImage=""~/images/collapse_blue.jpg"
CollapsedImage="~/images/expand_blue.jpg"
SuppressPostBack="true" />

The first panel (Panel?) is essentially the header where the image to expand/collapse
the panel is located. The majority of the actual content is in the second panel. In this
case, the content is being generated by a method called GetContentFillerText. So notice
that while the TargetContronID property of the CollapsiblePanelExtender is set to Paneld,
the ExpandControlID and CollapseControlID properties are both set to Panel2, which is
essentially the header panel. The small icon on the right portion of the header changes
depending on the state of the panel as specified by the ExpandedImage and CollapsedImage
properties. Figure 7-15 shows this panel in expanded mode.



CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

/2 CollapsiblePanel Sample - Windows Internet Explorer

GE'—; - Iné't http:,l',l'ajax.asp.net,l'ajaxtoollj !"f,l X i ILive Search

Yy b net CollapsiblePanel Sample | | @ * *. @ - E}Eage : @Tgols -

CollapsiblePanel Demonstration

‘What is ASP.NET AJAX?  (Hid!

ASP.NET AJAX is a free
framework for building a new
generation of richer, more
interactive, highly personalized
cross-browsar web applications.
This new web development
technology from Microsoft
intearates cross-browser client script libraries with the ASP.NET 2.0 server-based
development framework. In addition, ASP.NET AJAX offers you the same type of
development platform for client-based web pages that ASP.NET offers for server-
based pages. And because ASP.NET AJAX is an extension of ASP.NET, it is fully
integrated with server-based services. ASP.MET AJAX makes it possible to easily
take advantage of AJAX technigues on the web and enables vou to create
ASP.NET pages with a rich, responsive UT and server communication. However,
A14¥ isn't just for ASP.MET. You can take advantage of the rich dient framework
to easily build client-centric web applications that integrate with any backend data
provider and run on most modern browsers.

hd

[»

El
Ii I_ ,_ I_ l_ I_ m |@ Inkernet | Protected Mode: Off | R - g

Figure 7-15. Example of CollapsiblePanel (in expanded mode)

ConfirmButtonExtender Control

The ConfirmButtonExtender control, as the name suggests, captures the Click event of a
button and displays a confirmation dialog box. If the user clicks OK after that, the button
will function as implemented; otherwise, the Click event will simply be ignored. This
control is so simple that it only has two properties: TargetControlID and ConfirmText. As
you probably have guessed already, TargetControlID contains the ID of the target button,
and ConfirmText holds the text message that will be displayed in the dialog box requiring

user confirmation.

157



158

CHAPTER 7 " USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

The ConfirmButtonExtender control is ideal in situations where the user is about to
submit an order or other important unit of data. It works equally well with ASPNET
Button and LinkButton controls. To see this in a page, create an ASPNET button control on
a page followed by the ConfirmButtonExtender control. After that, set the TargetControlID
property of your ConfirmButtonExtender control to that of the regular button, and set the
text for the ConfirmText property. Lastly, create a Label control, and in the event handler
for the button, set the label’s text to a message indicating the successful receipt of the
Click event. Your ASPX markup should look similar to the following code snippet:

<asp:Button ID="Button1" runat="server" Text="Submit"ws
OnClick="Button1 Click" />

<ccl:ConfirmButtonExtender ID="ConfirmButtonExtender1"
TargetControlID="Button1" ConfirmText="Are you sure ?"
Tunat="server">

</cc1:ConfirmButtonExtender><br />

<asp:Label ID="Label1" runat="server" Width="360px"></asp:Label>

When you click this submit button, you will be presented with a dialog box as shown
in Figure 7-16.

Windows Internet Exp x|

Cancel |

Figure 7-16. Dialog box of the ConfirmButtonExtender control

If you cancel the dialog box, the initial Click event of the Submit button will be dis-
carded. However, if you click OK, the Click event is accepted, and the click-event method
is invoked. The click-event method displays a confirmation message in the Label control
as shown in Figure 7-17.



CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

/2 ConfirmButton Sample - Windows Inl o ] |

@‘ﬁ 7 I-B;, http:,l',l'localhost:4920:j * || X ILive Search

"I:? "1'&*’ ;éConFirmButton Sample | | T;'} & ':E R
[

Submit |

The form submission was accepted!

w
4| | »

|E|@ Internet | Protected Maode: OFF | F00% - A

Figure 7-17. Submit button accepted

DragPanelExtender Control

The DragPanelExtender control is without a doubt one of the coolest controls in the
ASPNET AJAX Control Toolkit; it allows the user to drag around a panel on a web page.
As you can imagine, manually implementing this type of functionality with client-side
JavaScript is a grand endeavor.

In addition to that, this control has only two properties and is extremely easy to use.
Other than the TargetControlID property, which you know all too well by now, the
DragPanelExtender control has another property called DragHandleID. This property speci-
fies the subpanel with which the user can drag the overall panel. In the SampleWebSite
project that you saw earlier, there is also an excellent example for the DragPanelExtender
control found in DragPanel.aspx. Before looking at the code, run the page, and drag the
panel around to see how nicely it works (see Figure 7-18).

159



160 CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

ﬂ‘ DragPanel Sample - Windows Internet Explorer ;lglﬂ
@‘_ﬁ. - I"E‘:t http:,l',l'ajax.asp.net,l'ajaxtoolldt,l'DragFj [#4 (] X ILive Search 2=

e e DragPanel Sample - - s v | Page + (O Tools v =

ASP.NET AJAX Control Toolkit

Drag Me f—

building a new generation of richer,
, highly p
rowser web applica
eb development technolo
ft integrates

script libraries with the
server-based development frame
In addition, ASP.N

the same type of development platform
for client-based web pages that
ASP.NET offers for server-based pages.
And because NET AJAX is an
extension of ASP.NET, it is fully

Kl | >
l_l_l_l_’_m|@ Internet | Protected Mode: OFF Ho100% - i

Figure 7-18. DragPanel control in action

When you view the ASPX markup for this page, you'll see a few nested Panel controls
and the DragPanel control:

<asp:Panel ID="Panel6" runat="server" Width="250px" =
style="z-index: 20;">
<asp:Panel ID="Panel7" runat="server" Width="100%" Height="20px"
BorderStyle="Solid" BorderWidth="2px" BorderColor="black">
<div class="dragMe">Drag Me</div>
</asp:Panel>
<asp:Panel ID="Panel8" runat="server" Width="100%" Height="250px"
Style="overflow: scroll;" BackColor="#0B3D73"
ForeColor="whitesmoke" BorderWidth="2px" BorderColor="black"



CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

BorderStyle="Solid" >
<div>
<p>This panel will reset its position on a postback or
page refresh.
</p>
<hr />
<p><%= GetContentFillerText() %></p>
</div>
</asp:Panel>
</asp:Panel>
</div>
<div style="clear: both;"></div>

<ajaxToolkit:DragPanelExtender ID="DragPanelExtender1" runat="server"ws
TargetControlID="Panel6" DragHandleID="Panel7" />

The key thing to note is that Panel6 was set as the TargetControlID because it is the
topmost panel and contains all the content, whereas Panel7 is being assigned to the
DragHandleID because it makes up the top part of the panel and the ideal point for the
user to drag.

DropDownExtender Gontrol

The DropDownExtender control is another extender that can be used with a number of
ASPNET controls for enhanced visual rendering of a drop-down control. Despite its
name, the DropDownExtender is not only limited to ASPNET DropDownList controls and can,
in fact, be used with many other controls such as a TextBox control or even a Label con-
trol. And much like the previous control, it has an additional property called
DropDownControlID, which is the ID of the control containing the actual content for Drop-
Down. Take a look at the sample that comes with the ASPNET AJAX Control Toolkit and
focus your attention on the DropDown.aspx page as shown in Figure 7-19.

161



162

CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

/2 DropDown Sample - Windows Internet Explorer i} = | | x|

@: - Ine‘i http:,l',l'ajax.asp.net,l'ajaxtoolkitj E""?.I A ILive Search | R |-
: = »

'i‘».? iy et DropDown Sample ﬁh B - Fﬁ%‘! = I:_,-,.“’Eage > (o Tools -

x ASP.NET AJAX Control Toolkit

DropDown Demonstration

Howver over the text below and dick to select an option:

|Se|ect your favorite exotic ice-cream flavor 5

Macha Blast
You selected Dry Fru
Java Cydone

Dry Fruit =
| ;l_l

L BT -
[ [ [ [ [ 3 mtemnet | protected Made: OFf R0 -

Figure 7-19. Example of the DropDown extender control

Viewing the code reveals a few LinkButton controls as options for the drop-down:

<asp:Label ID="TextlLabel" runat="server" Text=" Select your favoritews
exotic ice-cream flavor" Style="display: block; width: 300px; =
padding:2px; padding-right: 50px;font-family: Tahoma; font-size: w
11px;" />
<asp:Panel ID="DropPanel" runat="server" CssClass="ContextMenuPanel"ws
Style="display :none; visibility: hidden;">
<asp:LinkButton runat="server" ID="Optioni" Text=" Mocha Blast "w

CssClass="ContextMenuItem" OnClick="OnSelect" />
<asp:LinkButton runat="server" ID="Option2" Text=" Java Cyclone "=
CssClass="ContextMenuItem" OnClick="OnSelect" />
<asp:LinkButton runat="server" ID="Option3" Text=" Dry Fruitws
CssClass="ContextMenuItem" OnClick="OnSelect" />
</asp:Panel>
<ajaxToolkit:DropDownExtender runat="server" ID="DDE"



CHAPTER 7 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)

TargetControlID="TextLabel"
DropDownControlID="DropPanel" />

So, in this case, the drop-down list items are LinkButton controls held within a Panel
control and not an ASPNET DropDownExtender control—a perfect example of the flexibility
of this extender control.

Summary

The ASPNET AJAX Control Toolkit is a fantastic add-on to the UI control arsenal of any
ASPNET developer. It contains a number of very useful and attractive controls that can
leverage the existing ASPNET server controls and are relatively easy to implement. This
toolkit is available with many samples as well as the full source code allowing developers
to customize it even further.

In the next chapter, we'll continue to tour through the various other controls in the
ASPNET AJAX Control Toolkit.

163






CHAPTER 8

Using the ASP.NET AJAX Control
Toolkit (Part 2)

In the previous chapter, you were introduced to some of the controls in the ASPNET
AJAX Control Toolkit. As mentioned before, this package is readily available on
http://ajax.asp.net along with documentation and instructional videos. You can also
obtain the latest source code on CodePlex.com, Microsoft’s open source project deposi-
tory. In this chapter, we will continue going over some of the remaining controls in the
toolkit and how they can be applied in ASPNET web applications.

DropShadow and RoundedCorners Extenders

The DropShadow and RoundedCorners extenders are similar in that they both offer visual
enhancements to panels and other controls, particularly curved corners. First, let’s
examine the DropShadow extender.

DropShadow Extender

The DropShadow extender enables you to enhance the appearance of panels by adding
curved corners and background shadow to the panel control. Typically, this is done by
using images for the curved corners and CSS styling, among other things, for the shadow
effect. The DropShadow extender allows you to easily add such effects to any panel with a
number of parameters to tweak the appearance of these effects (see Table 8-1).

165


http://ajax.asp.net

166

CHAPTER 8 " USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)

Table 8-1. DropShadow Extender Properties

Property Name Description

BehaviorID ID of the client-side Behavior (used for custom DOM behaviors) to be
applied to the target panel

Opacity Opacity of the DropShadow extender (ranges from 0 to 1 on a percentage
point basis)

Radius Radius of the curved corners of the panel bar (in pixels)

Rounded Boolean value indicating whether or not to round the corners of the
panel

TargetControlID ID of the target control to which the DropShadow extender will be
applied

TrackPosition Boolean value indicating whether or not the drop shadow will track the
position of the target panel control

Width Width of the background shadow of the panel (in pixels)

To see a working example of the DropShadow extender, let’s take a look at the example
for the DropShadow extender provided in the documentation for the ASPNET AJAX Control
Toolkit shown in Figure 8-1.

(& DropShadow Sa'mple - Windows Intermet Explarer = | = [l

@CJ’ - &) hitp:/fajaxasp.net/ajaxo '|"| X || Lieseorn 2

W |E. DropShadow Sample

|_‘ tn~ v e v [} Page v

Rounded:

DropShadow Demonstration

Show Drop Shadow: [¥]

Radius: @ 2 & D 6 @ 10
Opacity: @ 25% @ 50% @ 75% @ 100%
1 [ | i
|_—$ 9 Internet | Protected Mode: Off HA00% -

Figure 8-1. An example of the DropShadow extender applied to a panel



CHAPTER 8 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)

Basically, you just need to set the TargetControlID property of the DropShadow extender
to the ID of the panel control to which you want to add shadow and curved corners. After
that, you can set the appropriate properties to get the desired visual appearance such as
those used in this example. In the following code snippet, the panel is given 75% opacity
with the radius of 6 pixels for the rounded corners and a width of 5 pixels for the back-
ground shadow.

<ajaxToolkit:DropShadowExtender ID="DropShadowExtender1" runat="server"
BehaviorID="DropShadowBehavior1"
TargetControlID="Panel1"

Width="5"
Rounded="true"
Radius="6"
Opacity=".75"

TrackPosition="true" />

RoundedCorners Extender

As mentioned earlier, this is very similar to the DropShadow extender and has many of the
same properties. However, the RoundedCorners extender is most ideal when you simply
want to add rounded corners to your panel or another control. This extender provides a
property, Corners, with which you can specify the corners of the target control you want
rounded. This is convenient in cases where you want one half of your panel to merge into
anther control and only want one side with rounded edges. The Corners property sup-
ports the following self-descriptive values: None, TopLeft, TopRight, BottomLeft,
BottomRight, Top, Right, Bottom, Left, and All. You can apply this extender to your control
with just three properties as shown here:

<ajaxToolkit:RoundedCornersExtender ID="RoundedCornersExtender1" runat="server"
TargetControlID="Panel1"
Radius="6"
Corners="All" />

Also, much like the DropShadow extender, the Radius property is provided, and thus the
radius of the rounded corners is adjustable. Figure 8-2 shows a great example of the
RoundedCorners extender as included in the ASPNET AJAX Toolkit samples.

167



168

CHAPTER 8 " USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)

(& RoundedCarners Sample - Windows Internet Explorer =)= -]

@U b |g, httpiffajax.asp.net/ajadoolkit’Rounde: = | ‘f| A | | Live Search pel 'I
mp— —— = o »
98 dhr |£ RoundedCarners Sample ‘ | - B - & o~ & |2k Page v G Tools »

 — A

RoundedCorners Demonstration

m

CornerRadius: B
@ None @ 2px @ 4px @ Gpx @ 10px
Corners:

[# Top Left @ Top Right
he [#] Bottom Left [#] Bottom Right

Border Color:

@ None @ Black @ Red @ Aqua

< : : '| — 1 |

@3 EQ @ Internet | Protected Maode: Off H00% v

Figure 8-2. RoundedCorners extender applied to a panel with all corners rounded

DynamicPopulate Extender

The DynamicPopulate extender can asynchronously populate an ASPNET control (e.g.,
TextBox, Panel) with HTML content generated by a method either in the same page or an
external web service. Although using this extender can save much time and effort in
some cases, it's not ideal in all situations, such as when the back-end functionality is
abstracted away via various access layers. However, if you are using a web service directly
in your page and/or have some business logic in the same page, the DynamicPopulate
extender can be a good alternative to writing custom code to manually populate a con-
trol with data. Table 8-2 lists the properties of this extender.



CHAPTER 8 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)

Table 8-2. DynamicPopulate Extender Properties

Property Name Description

CacheDynamicResults Boolean value indicating whether or not values fetched from a web
service should be cached for subsequent use. This is set to False by
default.

ClearContentsDuringUpdate Boolean value indicating whether or not the present content of the
target control should be cleared during the update.

ContextKey A key value used to pass context information to the data-providing
method.

CustomScript Name of custom script to be used instead of a web service method
for fetching data.

PopulateTriggerControlID ID of the control that will trigger the update on the target control
(where the data will be displayed).

ServiceMethod Name of the web method used to retrieve the data.

ServicePath Path of the web service used to retrieve the data.

TargetControlID Target control of the DynamicPopulate extender.

UpdatingCssClass CSS class applied to the target control while its inner content is
being updated.

The following code segment displays the current date onto a Panel control. It gets the
date from a web service method called GetHtml as set in the ServiceMethod property:

<ajaxToolkit:DynamicPopulateExtender ID="dp" runat="server"
TargetControlID="Panel1"
ClearContentsDuringUpdate="true"
PopulateTriggerControlID="Label1"
ServiceMethod="GetHtml"
UpdatingCssClass="dynamicPopulate Updating" />

The GetHtml method is provided as a web service in the same page, DynamicPopu-
late.aspx, for the purposes of this example. Based on the contextKey parameter (which is
passed to it via the various radio buttons for date formatting), this method returns the
date with appropriate formatting after a 250ms delay. The following is the actual code of
the GetHtml web method:

[System.Web.Services.WebMethod]
[System.Web.Script.Services.ScriptMethod]
public static string GetHtml(string contextKey)

{

169



170 CHAPTER 8 " USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)

// A little pause to mimic a latent call
System.Threading.Thread.Sleep(250);

string value = (contextKey == "U") ?
DateTime.UtcNow.ToString() :
String.Format("{0:" + contextKey + "

, DateTime.Now);
return String.Format("<span style='font-family:courierw=
new; font-weight:bold;'>{0}</span>", value);

}

The contextKey variable contains the value of the selected radio button in this case
and is used to determine the selected formatting for the date. You can see the Dynam-

icPopulate.aspx page in Figure 8-3.

e DynamicPopulate Sarmple - Windows Internet Explorer = @

@u - |é; http:/Aocalhost53375/Sam '| +4 | X ||| Live Search 2 |
R ey o =, f— TS = 3 2 2
S dhE !33;' \fi. Dyna.. !.éD X | | f'} ~ B ~ & v [k Page v (& Tools ~

DynamicPopulate Demonstration

Time at the server:

m

Choose a date/time format:
© Normal

@ Short Date

() Long Date

@ UTC Date/Time

This time 15 dynamically formatted and returned as HTML from the server:

3/4/2007

P [ . | v

Done ?ﬂ @ Internet | Protected Mode: Off 0% -

Figure 8-3. DynamicPopulate extender displaying the date fetched from a web service

One last point to notice about this example is that during the update of the panel bar,
the circular animating GIF image informs the user of the update status of this control.
This is accomplished by setting the UpdateCssClass property of the DynamicPopulate exten-
der in which you can have animating GIFs along with any other desired CSS code to have
the proper decoration for the target control during the update.



CHAPTER 8 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)

FilteredTextBox Extender

A common function of a client web application is data entry through forms. The typical
workflow for forms is that the user enters information, and a special type of input tag
called a submit button triggers an HTTP postback of the information to a server. The
server then processes the submitted information and returns a response. If the data is
invalid, the server returns a message indicating this, and the page developer writes a
script that emphasizes this to the user. This transaction involves at least one round-trip
to the server. You can also perform basic validation in JavaScript prior to form submis-
sion; this can be very effective and certainly faster for the user. However, performing
validation using JavaScript can be a complex task, which ASPNET AJAX control extenders
lend themselves naturally to.

The FilteredTextBox extender is very useful in that it forces inline validation on a tar-
get control. You can apply a custom validator or one of the provided ones to a TextBox
control and prevent the user from entering invalid input. This guarantees that invalid
data cannot be passed on from the text box (excluding HTTP data injection or other
advanced malicious attempts). The main properties of the FilteredTextBox extender are
listed in Table 8-3.

Table 8-3. FilteredTextBox Extender Properties

Property Name Description

FilterMode If the selected FilterType property is Custom, FilterMode can be either
InvalidChars or ValidChars.

FilterType Type of filter to be applied to the target TextBox (can be more than one
value separated by a comma). Potential values are Numbers,
Lowercaseletters, Uppercaseletters, and Custom.

InvalidChars When FilterType is set to Custom, and FilterMode is set to
InvalidChars, this property can contain a list of all invalid characters.

TargetControlID ID of the target TextBox control.

ValidChars When FilterType is set to Custom, and FilterMode is set to ValidChars,

this property can contain a list of all valid characters.

For instance, if you want an input box that only accepts digits, you can use this exten-
der with the FilterType property set to Numbers to prevent the user from entering any other
nonnumeric characters as shown in the following code snippet and in Figure 8-4.

You can only type numbers here: 8nbsp;<asp:TextBox ID="TextBox1" runat="server" />
<ajaxToolkit:FilteredTextBoxExtender
ID="FilteredTextBoxExtender1"
runat="server"
TargetControlID="TextBox1"
FilterType="Numbers" />

17



172 CHAPTER 8 " USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)

(& FilteredTextBox Extender Sample - Windows Internet Bxp.. | = || B |[E5]

‘ Live Search

ety |£_ http:/flocalhost4d: « | 1 ‘ A

»

U daE :'_éF\IteredTextBoxEmender..‘_ | & - -

You can only type numbers here: 1234555

[ &0 Internet | Protected Mode: OFF B 1008 -

Figure 8-4. FilteredTextBox extender displaying the date fetched from a web service

FilterType has four types that can be used in conjunction with one another: Numbers,
Lowercaseletters, Uppercaseletters, and Custom. If you choose Custom, then you must pro-
vide a list of characters to the ValidChars or InvalidChars property depending on the
need. If you have a combination of values for FilterType, (e.g., Numbers, Custom), the
FilterTextBox extender applies the more stringent inclusion or exclusion of character as
specified on top of allowing only digits.

HoverMenu Extender

Hover menus can be a powerful Ul tool in any application, and until recently, it took a
good amount of effort to implement them in most web applications. The HoverMenu
extender allows you to add a hover menu to any ASPNET web control in your page. When
the user hovers over the target control, another control (as specified in the properties)
pops up along with any defined CSS styles applied. Table 8-4 lists the properties of the
HoverMenu extender.

Table 8-4. HoverMenu Extender Properties

Property Name Description
HoverCssClass CSS class to be applied when the pop-up menu is displayed.
OffsetX/0ffsety Offset values (in pixels) for the pop-up control when the mouse hovers

over the target control from the top-left corner.

PopDelay Amount of time elapsed (ms) until the pop-up control disappears after
the initial hover.

PopupControlID ID of the pop-up control that will be displayed when the mouse hovers
over the target control.



CHAPTER 8 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 173

Property Name Description

PopupPosition Position of the pop-up control relative to the target control (Left, Right,
Center, Top, Bottom).

TargetControlID ID of the target control over which the pop-up control will display
when the mouse hovers over it.

Once again, the provided sample in the ASPNET AJAX Toolkit, which can also be
found online at http://ajax.asp.net, does a great job of illustrating the potential use of
this extender. In this example, a hover menu, which is composed of a panel with two
links, is used with a GridView control. When the user hovers over the items in the grid, a
pop-up menu appears to the left of the item with two links: Edit and Delete. If Delete is
clicked, the target row is deleted, and the user can choose to edit the data inline as speci-
fied in the EditTemplate of the GridView control. You can see this sample in Figure 8-5.

& Hoverhdenuy Sarnple - Windows Internet Explarer =
@u * | @] httpiffajaxasp.netfajaxtoolkit « | ‘}| X ‘ | Live Search o -

G e ——————————| = = »
Wi daf |§ Howverbdenu Sample I | &bﬁ‘ ~ B - @~ § [k Page v

HoverMenu Demonstration

Mouse over the arid below to see the options for each row. |
Have product idea Figure out opportunities ] —
Talk to customers Make sure they want it 1

Design product Figure out the festures and architecture 2

Build prototype  Work out the issues 3
Edit |Test features Use TDD and automated testing 4
Delete| 2
—— | Build production =
: o Make it fast and robust 5
version
Fix bugs Make sure it works 6
Ship Ship it X
T =5 - = - i - ’
& [ €D Internet | Protected Made: Off F100% -

Figure 8-5. HoverMenu extender used on a GridView control

<ajaxToolkit:HoverMenuExtender ID="hme2" runat="server"
HoverCssClass="popupHover"
PopupControlID="PopupMenu”
PopupPosition="Left"
TargetControlID="Panel9"
PopDelay="25" />


http://ajax.asp.net

174

CHAPTER 8 " USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)

In the preceding code segment, we have an instance of the HoverMenu extender with
its PopupControlID property set to PopupMenu, which is the ID of the panel control contain-
ing the menu items displayed when a user hovers over an item in the GridView control.
PopupPosition is set to Left, so a menu will appear to the left of the Gridview row. With that
in mind, take a look at the code for the PopupMenu panel.

<asp:Panel CssClass="popupMenu" ID="PopupMenu" runat="server">
<div style="border:1px outset white;padding:2px; "=
<div>
<asp:LinkButton ID="LinkButton1" runat="server" CommandName="Edit"ws
Text="Edit" />w=
</div>
<div>
<asp:LinkButton ID="LinkButton2" runat="server"ws
CommandName="Delete" Text="Delete" />
</div>
</div>
</asp:Panel>

This is essentially a simple panel with two ASPNET LinkButton controls, one for
Delete and another for Edit. These trigger the appropriate template in the Gridview and
provide the functionality of inline editing or row deletion. More in-depth discussion of
the templates in the GridView control is beyond the scope of this section but feel free to
view the code because it is quite straightforward.

MaskedEdit and MaskedEditValidator Extenders

As mentioned earlier, often most web applications require input from the user in one
form or another. Validation logic is usually written on either the client or server side or
quite often both. Client-side JavaScript can provide quick feedback to the user without
around-trip to the server, whereas server-side validation has the added benefit of having
access to business logic and/or data access on the server. However, ensuring data
integrity and validation is best done when the range of user input is limited based on
expected data. Much like the FilteredTextBox extender, the MaskedEdit extender is
designed to enforce validation on user input by using a “mask” and thus restricting the
range of possible values entered into a TextBox control. The MaskedEdit is a little more
sophisticated than the FilteredTextBox extender in that it offers visual guidance to the
user to enter the correct data and supports more complex rules through the use of
MaskedEditValidator controls. Table 8-5 lists the properties of this extender.



CHAPTER 8 © USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)

Table 8-5. Main Properties of the MaskedEdit Extender

Property Name Description

AcceptAMPM Boolean value indicating whether or not to display AM/PM for time
values.

AcceptNegative Whether or not negative values are allowed in the target TextBox.
Possible values are None, Left, and Right.

AutoComplete Boolean value indicating whether or not to enable autocomplete for
the target TextBox.

AutoCompleteValue Default character set to use when autocomplete is enabled.

Century Default century used when the date mask has only two digits for the
year.

ClearMaskOnLostFocus Boolean value indicating whether or not to clear the input mask when
the target TextBox loses focus.

ClearTextOnInvalid Boolean value indicating whether or not to clear the existing text in the
target TextBox if the input has proven to be invalid.

ClipboardEnabled Boolean value indicating whether or not to allow access to the
clipboard for input into the target TextBox.

DisplayMoney Whether or not the currency symbol is displayed in the target TextBox.
Possible values are None, Left, and Right.

ErrorTooltipCssClass CSS class applied to the tool tip error message.

ErrorTooltipEnabled Boolean value indicating whether or not to display an error tool tip
when